J. Semicond. > 2013, Volume 34 > Issue 2 > 025001

SEMICONDUCTOR INTEGRATED CIRCUITS

Phase noise modeling in LC oscillators implemented in SiGe technology

M. Bouhouche1, , S. Latreche1 and C. Gontrand2

+ Author Affiliations

 Corresponding author: M. Bouhouche, roubilia@yahoo.fr

DOI: 10.1088/1674-4926/34/2/025001

PDF

Abstract: This paper addresses phase noise analysis of a radiofrequency LC oscillator built around a SiGe heterojunction bipolar transistor (HBT) realized in a 0.35 μm BiCMOS process, as an active device. First, we give a brief background to SiGe HBT device physics. The key point is to initiate quantitative analysis on the influence of defects induced during extrinsic base implantation on electric performances of this device. These defects are responsible for the current fluctuations at the origin of low frequency noise in BiCMOS technologies. Next, we investigate the effect of implantation defects as a source of noise in semiconductors on the phase noise of a radiofrequency LC oscillator. We observe their influence on the oscillator phase noise, and we quantify the influence of their energy distribution in the semiconductor gap. Second, we give a behavioral model of an LC oscillator containing a SiGe HBT as an active device. The key goal is to study the susceptibility of a radiofrequency oscillator built around a SiGe HBT to phase noise disturbance sources. Based on the time variance behavior of phase noise in oscillators, transient simulations (in the time domain) were used to analyze the time-dependent noise sensitivity of the oscillator.

Key words: SiGe heterojunctionradiofrequencymixed-mode simulationsoscillatorphase noise



[1]
Demir A, Mehrota A, Roychowdhury J. Phase noise in oscillators:a unified theory numerical method for characterization. IEEE Circuits and Systems, 2000, 47:655 doi: 10.1109/81.847872
[2]
Razavi B. A study of phase noise in CMOS oscillators. IEEE J Solid-State Circuits, 1996, 31:331 doi: 10.1109/4.494195
[3]
Mitin V, Reggiani L, Varani L. Generation-recombination noise in semiconductors. Noise and Fluctuations Control in Electronic Devices, 2003:11 http://adsabs.harvard.edu/abs/1961JPCS...22..391K
[4]
Cressler J D. SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications. IEEE Trans Microw Theory Tech, 1998, 46:572 doi: 10.1109/22.668665
[5]
Ramonas M, Sakalas P, Jungemann C, et al. Microscopic modeling of high frequency noise in SiGe HBTS. 37th European Solid State Device Research Conference, 2007:183 http://ieeexplore.ieee.org/document/4430909/
[6]
Hajimiri A, Lee T H. A general theory of phase noise in electrical oscillator. IEEE J Solid-State Circuits, 1998, 33:179 doi: 10.1109/4.658619
[7]
Harame D L, Ahlgren D C, Coolbaugh D D, et al. Current status and future trends of SiGe BiCMOS technology. IEEE Trans Electron Devices, 2001, 48:2575 doi: 10.1109/16.960385
[8]
Baudry H, Szelag B, Deléglise F, et al. BiCMOS7RF:a highly manufacturable 0.25μm BiCMOS RF applications dedicated technology using non-selective SiGeC epitaxy. IEEE Bipolar/BiCMOS Circuits and Technology, 2003:207
[9]
Mouis M, Gregory H J, Denorme S, et al. Physical modelling of the enhanced diffusion of boron due to ion implantation in thin base NPN bipolar transistors. Microelectron J, 1995, 26:255 doi: 10.1016/0026-2692(95)98927-J
[10]
Militaru L, Souifi A, Mouis M, et al. Investigation of deep traps in silicon-germanium epitaxial base bipolar transistors with a single polysilicon quasi self aligned architecture. Microelectron Reliab, 2001, 41:253 doi: 10.1016/S0026-2714(00)00097-4
[11]
ISE: Integrated Systems Engineering (SYNOPSYS), Zurich, Switzerland, DESSIS
[12]
Pejcinovic B, Tag T W, Navon D H. A comparison of Si and Si1-xGex based BJTs using numerical simulation. IEEE Bipolar Circuits and Technology Meeting, 2006
[13]
Bouhouche M, Latreche S, Gontrand C. Investigation of process induced defects in SiGe/Si heterojunction bipolar transistors. International Conference of Modelling and Simulation, Algeria, 2007 doi: 10.1116/1.590047
[14]
Hajimiri A, Lee T. Oscillator phase noise:a tutorials. IEEE J Solid-State Circuits, 2000, 35:326 doi: 10.1109/4.826814
[15]
Ham D, Hajimiri A. concepts and methods in optimization of integrated LC VCOs. IEEE J Solid-State Circuits, 2001, 36:896 doi: 10.1109/4.924852
[16]
Hajimiri A, Limotyrakis S, Lee T H. Jitter and phase noise in ring oscillators. IEEE J Solid-State Circuits, 1999, 35:790 http://ieeexplore.ieee.org/document/766813/?arnumber=766813&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:16618)
[17]
Ham D, Hajimiri A. Virtual damping and Einstein relation in oscillators. IEEE J Solid-State Circuits, 2002, 38:407 http://ieeexplore.ieee.org/document/1183847/authors
Fig. 1.  Cross-section of a Si/SiGe heterojunction bipolar transistor (HBT).

Fig. 2.  Calculated Gummel characteristics of both SiGe HBTs without and with extrinsic base implantation defects.

Fig. 3.  Schematic circuit of an LC oscillator.

Fig. 4.  A typical response of the HBT oscillator obtained by mixedmode simulation.

Fig. 5.  A typical response of the SiGe HBT oscillator without defects and with implantation defects.

Fig. 6.  A typical response of the SiGe HBT oscillator with various trap energies.

Fig. 7.  Phase shift when a current impulse is injected at different instants in the period oscillation. (a) The zero-crossing when falling. (b) The bottom. (c) The zero-crossing when rising. (d) The peak.

Fig. 8.  ISF for current pulses in parallel with the C1 capacitance tank.

Fig. 9.  ISF voltage pulses in series with tank capacitance C1.

[1]
Demir A, Mehrota A, Roychowdhury J. Phase noise in oscillators:a unified theory numerical method for characterization. IEEE Circuits and Systems, 2000, 47:655 doi: 10.1109/81.847872
[2]
Razavi B. A study of phase noise in CMOS oscillators. IEEE J Solid-State Circuits, 1996, 31:331 doi: 10.1109/4.494195
[3]
Mitin V, Reggiani L, Varani L. Generation-recombination noise in semiconductors. Noise and Fluctuations Control in Electronic Devices, 2003:11 http://adsabs.harvard.edu/abs/1961JPCS...22..391K
[4]
Cressler J D. SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications. IEEE Trans Microw Theory Tech, 1998, 46:572 doi: 10.1109/22.668665
[5]
Ramonas M, Sakalas P, Jungemann C, et al. Microscopic modeling of high frequency noise in SiGe HBTS. 37th European Solid State Device Research Conference, 2007:183 http://ieeexplore.ieee.org/document/4430909/
[6]
Hajimiri A, Lee T H. A general theory of phase noise in electrical oscillator. IEEE J Solid-State Circuits, 1998, 33:179 doi: 10.1109/4.658619
[7]
Harame D L, Ahlgren D C, Coolbaugh D D, et al. Current status and future trends of SiGe BiCMOS technology. IEEE Trans Electron Devices, 2001, 48:2575 doi: 10.1109/16.960385
[8]
Baudry H, Szelag B, Deléglise F, et al. BiCMOS7RF:a highly manufacturable 0.25μm BiCMOS RF applications dedicated technology using non-selective SiGeC epitaxy. IEEE Bipolar/BiCMOS Circuits and Technology, 2003:207
[9]
Mouis M, Gregory H J, Denorme S, et al. Physical modelling of the enhanced diffusion of boron due to ion implantation in thin base NPN bipolar transistors. Microelectron J, 1995, 26:255 doi: 10.1016/0026-2692(95)98927-J
[10]
Militaru L, Souifi A, Mouis M, et al. Investigation of deep traps in silicon-germanium epitaxial base bipolar transistors with a single polysilicon quasi self aligned architecture. Microelectron Reliab, 2001, 41:253 doi: 10.1016/S0026-2714(00)00097-4
[11]
ISE: Integrated Systems Engineering (SYNOPSYS), Zurich, Switzerland, DESSIS
[12]
Pejcinovic B, Tag T W, Navon D H. A comparison of Si and Si1-xGex based BJTs using numerical simulation. IEEE Bipolar Circuits and Technology Meeting, 2006
[13]
Bouhouche M, Latreche S, Gontrand C. Investigation of process induced defects in SiGe/Si heterojunction bipolar transistors. International Conference of Modelling and Simulation, Algeria, 2007 doi: 10.1116/1.590047
[14]
Hajimiri A, Lee T. Oscillator phase noise:a tutorials. IEEE J Solid-State Circuits, 2000, 35:326 doi: 10.1109/4.826814
[15]
Ham D, Hajimiri A. concepts and methods in optimization of integrated LC VCOs. IEEE J Solid-State Circuits, 2001, 36:896 doi: 10.1109/4.924852
[16]
Hajimiri A, Limotyrakis S, Lee T H. Jitter and phase noise in ring oscillators. IEEE J Solid-State Circuits, 1999, 35:790 http://ieeexplore.ieee.org/document/766813/?arnumber=766813&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:16618)
[17]
Ham D, Hajimiri A. Virtual damping and Einstein relation in oscillators. IEEE J Solid-State Circuits, 2002, 38:407 http://ieeexplore.ieee.org/document/1183847/authors
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2077 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 03 March 2012 Revised: 16 August 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Bouhouche, S. Latreche, C. Gontrand. Phase noise modeling in LC oscillators implemented in SiGe technology[J]. Journal of Semiconductors, 2013, 34(2): 025001. doi: 10.1088/1674-4926/34/2/025001 ****M. Bouhouche, S. Latreche, C. Gontrand. Phase noise modeling in LC oscillators implemented in SiGe technology[J]. J. Semicond., 2013, 34(2): 025001. doi: 10.1088/1674-4926/34/2/025001.
      Citation:
      M. Bouhouche, S. Latreche, C. Gontrand. Phase noise modeling in LC oscillators implemented in SiGe technology[J]. Journal of Semiconductors, 2013, 34(2): 025001. doi: 10.1088/1674-4926/34/2/025001 ****
      M. Bouhouche, S. Latreche, C. Gontrand. Phase noise modeling in LC oscillators implemented in SiGe technology[J]. J. Semicond., 2013, 34(2): 025001. doi: 10.1088/1674-4926/34/2/025001.

      Phase noise modeling in LC oscillators implemented in SiGe technology

      DOI: 10.1088/1674-4926/34/2/025001
      More Information
      • Corresponding author: M. Bouhouche, roubilia@yahoo.fr
      • Received Date: 2012-03-03
      • Revised Date: 2012-08-16
      • Published Date: 2013-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return