Citation: |
Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. Journal of Semiconductors, 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005
****
L Y Yang, S Ai, Y H Chen, M Y Cao, K Zhang, X H Ma, Y Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005.
|
A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors
DOI: 10.1088/1674-4926/34/7/074005
More Information
-
Abstract
Self-heating in multi-finger AlGaN/GaN high-electron-mobility transistors (HEMTs) is investigated by measurements and modeling of device junction temperature under steady-state operation. Measurements are carried out using micro-Raman scattering to obtain the detailed and accurate temperature distribution of the device. The device peak temperature corresponds to the high field region at the drain side of gate edge. The channel temperature of the device is modeled using a combined electro-thermal model considering 2DEG transport characteristics and the Joule heating power distribution. The results reveal excellent correlation to the micro-Raman measurements, validating our model for the design of better cooled structures. Furthermore, the influence of layout design on the channel temperature of multi-finger AlGaN/GaN HEMTs is studied using the proposed electro-thermal model, allowing for device optimization. -
References
[1] Khan M A, Kuznia J N, van Hove J M, et al. Observation of a two-dimensional electron gas in low pressure metal organic chemical vapor deposited GaN/AlGaN hetero-junctions. Appl Phys Lett, 1992, 60(24):3027 doi: 10.1063/1.106798[2] Wu Y F., Keller B P, Fini P, et al. High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett, 1998, 19(2):50 doi: 10.1109/55.658600[3] Wang Dongfang, Chen Xiaojuan, Liu Xinyu. A Ku-band 3.4 W/mm power AlGaN/GaN HEMT on a sapphire substrate. Journal of Semiconductors, 2010, 31(2):024001 doi: 10.1088/1674-4926/31/2/024001[4] Yang Liyuan, Hao Yue, Ma Xiaohua, et al. High temperature characteristics of AlGaN/GaN high electron mobility transistors. Chin Phys B, 2011, 20(11):117302 doi: 10.1088/1674-1056/20/11/117302[5] Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett, 2002, 23(1):7 doi: 10.1109/55.974795[6] Rajasingam S, Pomeroy J W, Kuball M, et al. Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs. IEEE Electron Device Lett, 2004, 25(7):456 doi: 10.1109/LED.2004.830267[7] Yang Liyuan, Xue Xiaoyong, Zhang Kai, et al. Channel temperature determination of multifinger AlGaN/GaN high electron mobility transistor using micro-Raman technique. Chin Phys B, 2012, 21(7):077304 doi: 10.1088/1674-1056/21/7/077304[8] Das J, Oprins H, Hangfeng J, et al. Improved thermal performance of AlGaN/GaN HEMTs by an optimized flip-chip design. IEEE Trans Electron Devices, 2006, 53(11):2696 doi: 10.1109/TED.2006.883944[9] Florescu D I, Asnin V M, Pollak F H, et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Appl Phys Lett, 2000, 77(10):1464 doi: 10.1063/1.1308057 -
Proportional views