Citation: |
Yuhai Wang, Zhengkun Qin, Chunxu Wang, Lizhong Wang. Analysis of characteristics of vertical coupling microring resonator[J]. Journal of Semiconductors, 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012
****
Y H Wang, Z K Qin, C X Wang, L Z Wang. Analysis of characteristics of vertical coupling microring resonator[J]. J. Semicond., 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012.
|
Analysis of characteristics of vertical coupling microring resonator
DOI: 10.1088/1674-4926/34/7/074012
More Information
-
Abstract
By using the coupled mode theory and the transfer matrix technique, the optical transfer function is presented for analyzing the size of the waveguide, radius of the microring, free spectral range and amplitude coupling ratio of the vertical coupling microring resonator. Under the central wavelength of 1550 nm, optimization and simulation are performed when the central deviation between the ring and the channel is 0, 0.5, 1 μm, respectively, the 3-dB bandwidth of the spectral response is about 0.21, 0.09, 0.03 nm, and the intensity of the nonresonant light is below-30, -40, -50 dB, respectively. -
References
[1] Tsilipakos O, Yioultsis T V, Kriezis E E. Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys, 2009, 106(9):093109 doi: 10.1063/1.3256139[2] Li Shuai, Wu Yuanda, Yin Xiaojie, et al. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. Journal of Semiconductors, 2011, 32(8):084007 doi: 10.1088/1674-4926/32/8/084007[3] Balakrishnan M, Faccini M, Diemeer M B J, et al. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer. Appl Phys Lett, 2008, 92(15):153310 doi: 10.1063/1.2908914[4] Ling T, Chen S L, Guo L J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl Phys Lett, 2011, 98(20):204103 doi: 10.1063/1.3589971[5] Su Baoqing, Wang Chunxia, Kan Qiang, et al. A novel structure of silicon-on-insulator microring biosensor based on Young's two-slit interference and its simulation. Journal of Semiconductors, 2011, 32(7):074010 doi: 10.1088/1674-4926/32/7/074010[6] Wang X Y, Ma C S, E S L, et al. Parameter optimization and characteristic analysis of a polymer microring resonant wavelength multiplexer. Opt Laser Technol, 2005, 37(4):337 doi: 10.1016/j.optlastec.2004.04.016[7] Ma C S, Xin Y, Xu Y Z, et al. Analysis of a 1×16 polymer microring resonant wavelength demulti/multiplexer with double seriated identical microrings in every filter element. J Opt A:Pure Appl Opt, 2005, 7(3):135 doi: 10.1088/1464-4258/7/3/007[8] Yan X, Ma C S, Zheng C T, et al. Analysis of polymer electro-optic microring resonator switches. Opt Laser Technol, 2010, 42(3):526 doi: 10.1016/j.optlastec.2009.09.011[9] Stamataki I, Kapsalis A, Mikroulis S, et al. Modal properties of all-active InGaAsP/InP microring lasers. Opt Commun, 2009, 282(12):2388 doi: 10.1016/j.optcom.2009.02.072[10] Little B E, Chu S T, Pan W, et al. Microring resonator arrays for VLSI photonics. IEEE Photonic Tech L, 2000, 12(3):323 doi: 10.1109/68.826928[11] Marcatili E A J. Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Sys Tech J, 1969, 48(7):2071 doi: 10.1002/bltj.1969.48.issue-7[12] Oda K, Takato N, Toba H. A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J Lightwave Technol, 1991, 9(6):728 doi: 10.1109/50.81975[13] Yan X, Ma C S, Xu Y Z, et al. Characteristics of vertical bent coupling between straight and curved rectangular optical waveguides. Optik, 2005, 116(8):397 doi: 10.1016/j.ijleo.2005.01.031 -
Proportional views