Citation: |
Zhengkun Qin, Yue Yu, Jia Song, Huiping Zhang, Guofeng Wang, Yongxin Sun, Yuhai Wang. Analysis of fabrication results for 17×17 polymer arrayed waveguide grating multiplexers with flat spectral responses[J]. Journal of Semiconductors, 2013, 34(9): 094011. doi: 10.1088/1674-4926/34/9/094011
****
Z K Qin, Y Yu, J Song, H P Zhang, G F Wang, Y X Sun, Y H Wang. Analysis of fabrication results for 17×17 polymer arrayed waveguide grating multiplexers with flat spectral responses[J]. J. Semicond., 2013, 34(9): 094011. doi: 10.1088/1674-4926/34/9/094011.
|
Analysis of fabrication results for 17×17 polymer arrayed waveguide grating multiplexers with flat spectral responses
DOI: 10.1088/1674-4926/34/9/094011
More Information
-
Abstract
Based on transmission theory, a 17×17 polymer arrayed waveguide grating (AWG) multiplexer parameter optimization is performed, and the influence of the fabrication results on the transmission characteristics are analyzed. In this paper, we mainly discuss three of the main errors in the fabrication of polymer AWG devices. One is δ n1, which is caused by the tuning of the core refractive index n1, the second is δ b, which results from the rotating-coating of the core thickness b, and the other is the non-ideal core cross-section, which is caused by steam redissolution. The effects of the above fabrication errors on the transmission characteristics of the AWG device are investigated, and compensation techniques are proposed. By comparing the theoretical simulation and experimental results, the shift in the transmission spectrum is reduced by 0.028 nm, the 3 dB bandwidth is increased by about 0.036 nm, the insertion loss is reduced by about 3 dB for the central channel and 4.5 dB for the edge channels, and the crosstalk is reduced by 1.5 dB. -
References
[1] Maru K, Okawa M, Abe Y, et al. Silica-based 2.5%-delta arrayed waveguide grating using simple polarisation compensation method with core width adjustment. Electron Lett, 2007, 43(1):26 doi: 10.1049/el:20073098[2] Yasumoto M, Suzuki T, Tsuda H, et al. Fabrication of (Pb, La)(Zr, Ti)O3 thin-film arrayed waveguide grating. Electron Lett, 2007, 43(1):24 doi: 10.1049/el:20073568[3] Qin Z K, Ma C S. An efficient technique for reduce spectral shift of arrayed waveguide gratings. Microw Opt Technol Lett, 2011, 53(2):273 doi: 10.1002/mop.v53.2[4] Amersfoort M R, de Boer C R, van Ham F P G, et al. Phased-array wavelength demultiplexer with flattened wavelength response. Electron Lett, 1994, 30(4):300 doi: 10.1049/el:19940249[5] Amersfoort M R, Soole J B D, LeBlance H P, et al. Passband broadening of integrated arrayed waveguide filters using multimode interference couplers. Electron Lett, 1996, 32(5):449 doi: 10.1049/el:19960344[6] Pan P, An J M, Wang L L, et al. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs. Journal of Semiconductors, 2012, 33(7):074010 doi: 10.1088/1674-4926/33/7/074010[7] Sattari H. Arrayed waveguide grating-based demultiplexer with two central wavelengths. Optik, 2012, 123(9):775 doi: 10.1016/j.ijleo.2011.04.024[8] Qin Z K, Ma C S, Zhang H M, et al. Polymer arrayed waveguide grating of box-like spectral response. Journal of Semiconductors, 2008, 29(12):2307 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08060201&flag=1[9] Qin Z K, Ma C S, Zhang H M, et al. Effect of manufacturing tolerances on characteristics of arrayed waveguide grating multiplexers. Chinese Journal of Semiconductors, 2006, 27(5):926[10] Zhang H M, Ma C S, Qin Z K, et al. Reduction of sidewall roughness, insertion loss and crosstalk of polymer arrayed waveguide grating using vapor-redissolution technique. Thin Solid Film, 2007, 515(18):7313 doi: 10.1016/j.tsf.2007.02.068[11] An J M, Xia J Z, Li J, et al. Numerical analysis for phase error of silica-based arrayed waveguide grating. Chinese Journal of Semiconductors, 2005, 26(13):220[12] Guo W B, Ma C S, Chen W Y, et al. Analysis of transmission characteristics of polymer arrayed waveguide grating multiplexer. Chinese Journal of Semiconductors, 2002, 23(6):619[13] Liu W J, Lai I. Design simulation and fabrication process of polyimide and polyimide/silica hybrid materials for rib-type arrayed waveguide grating. Surf Coatings Technol, 2011, 206(5):1029 doi: 10.1016/j.surfcoat.2011.04.005[14] Qin Z K, Ma C S. Fabrication of a 17×17 polymer arrayed waveguide grating with flat spectral response. Journal of Semiconductors, 2008, 29(9):1804 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08030801&flag=1[15] Qin Z K, He F, Liu C L, et al. Fabrication of 17×17 polymer/Si arrayed waveguide grating with flat spectral response using steam-redissolution technique. Journal of Semiconductors, 2010, 31(7):074004 doi: 10.1088/1674-4926/31/7/074004[16] Ma C S, Qin Z K, Zhang H M, et al. Arrayed waveguide grating multiplexer with boxlike spectral response. Microw Opt Technol Lett, 2006, 48(5):916 doi: 10.1002/(ISSN)1098-2760[17] Ma C S, Zhang H M, Zhang D M, et al. Box-like spectral response of arrayed waveguide grating multiplexers. Opt Commun, 2005, 249(1-3):209 doi: 10.1016/j.optcom.2005.01.026 -
Proportional views