Citation: |
Zhiqun Cheng, Minshi Jia, Ya Luan, Xinxiang Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. Journal of Semiconductors, 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005
****
Z Q Cheng, M S Jia, Y Luan, X X Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. J. Semicond., 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005.
|
Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure
DOI: 10.1088/1674-4926/35/12/125005
More Information
-
Abstract
The design and fabrication of an ultra-broadband power amplifier based on a GaN HEMT, which operates in the frequency range from 3 to 8 GHz, is presented in this paper. A TGF2023-02 GaN HEMT chip from TriQuint is adopted and modeled. A novel negative feedback structure is applied in the circuit. The measured results show that the amplifier module has a wide range frequency response that is almost consistent with those of simulation at frequencies from 3 to 6.5 GHz. The measured power gain is greater than 7 dB between 3 and 6.5 GHz. The saturated output power is 38.5 dBm under DC bias of Vds=28 V, Vgs=-3.5 V at the frequency of 5.5 GHz.-
Keywords:
- GaN HEMT,
- modeling,
- power amplifier,
- wideband,
- negative feedback
-
References
[1] Sim J, Lim J, Park M, et al. Analysis and design of wide-band power amplifier using GaN. Microwave Conference, 2009:2352 http://ieeexplore.ieee.org/document/5385457/[2] Pribble W L, Palmour J W, Sheppard S T, et al. Application of SiC MESFETs and GaN HEMTs in power amplifier design. IEEE MTT'S International, 2002, 3:1819 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1012216[3] Xue H X, Kenington P B, Beach M A. A high performance ultra-broadband RF choke microwave applications. IEEE Colloquium on Evolving Technologies for Small Earth Station Hardware, 1995[4] Ayasli Y, Reynolds L D, Vorhaus J L, et al. Monolithic 2-20 GHz GaAs travelling-wave amplifier. Electron Lett, 1982, 18(14):596 doi: 10.1049/el:19820409[5] Kuwata E, Yamanaka K, Kirikoshi T, et al. C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT. Microwave Conference, 2009:1663 http://ieeexplore.ieee.org/document/5384324/[6] Xu J J, Wu Y F, Keller S, et al. 1-8-GHz GaN-based power amplifier using flip-chip bonding. IEEE Microw Guided Wave Lett, 1999, 9(7):277 doi: 10.1109/75.774146[7] Santhakumar R, Thibeault B, Member S, et al. Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs. IEEE Trans Microw Theory Tech, 2011, 59(8):2059 doi: 10.1109/TMTT.2011.2144996[8] Lin Xigui, Hao Yue, Feng Qian, et al. Design of power amplifier based on AlGaN/GaN HEMT. Chinese Journal of Semiconductors, 2006, 31(1):52(in Chinese)[9] Yu Xuming, Zhang Bin, Chen Tangsheng, et al. 6-18 GHz broadband GaN power amplifier MMIC. Research & Progress of Solid-State Electronics, 2011, 31(2):111(in Chinese) http://ieeexplore.ieee.org/document/7167127/[10] Liu D, Wang L, Chen X J. Microwave and Millimeter Wave Circuits and SystemTechnology, International workshop, 2012, 1[11] [12] Chen Chi, Hao Yue, Yang Ling, et al. Nonlinear characterization of GaN HEMT. J Semicond, 2010, 31(11):114004 doi: 10.1088/1674-4926/31/11/114004[13] Cheng Z Q, Jin L W, Shi W. Design of broadband GaN HEMT power amplifier with Ku band. Appl Mechan Mater, 2012, 263-266:39 doi: 10.4028/www.scientific.net/AMM.263-266 -
Proportional views