Citation: |
Jun Liu, Zhiping Yu, Lingling Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. Journal of Semiconductors, 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010
****
J Liu, Z P Yu, L L Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. J. Semicond., 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010.
|
A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs
DOI: 10.1088/1674-4926/35/3/034010
More Information
-
Abstract
A complete and accurate surface potential based large-signal model for compound semiconductor HEMTs is presented. A surface potential equation resembling the one used in conventional MOSFET models is achieved. The analytic solutions from the traditional surface potential theory that developed in MOSFET models are inherited. For core model derivation, a novel method is used to realize a direct application of the standard surface potential model of MOSFETs for HEMT modeling, without breaking the mathematic structure. The high-order derivatives of I-V/C-V remain continuous, making the model suitable for RF large-signal applications. Furthermore, the self-heating effects and the transconductance dispersion are also modelled. The model has been verified through comparison with measured DC Ⅳ, Gummel symmetry test, CV, minimum noise figure, small-signal S-parameters up to 66 GHz and single-tone input power sweep at 29 GHz for a 4×75 μm×0.1 μm InGaAs/GaAs power pHEMT, fabricated at a commercial foundry. -
References
[1] Pala V, Peng H, Wright P, et al. Integrated high frequency power converters based on GaAs pHEMT:technology characterization and design examples. IEEE Trans Power Electron, 2011, 27(99):1 http://ieeexplore.ieee.org/document/6069868/[2] Medjdoub F, Carlin J F, Gonschorek M, et al. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices. IEEE International Electron Devices Meeting (IEDM), 2006:1 https://infoscience.epfl.ch/record/210881?ln=en[3] Gildenblat G, Wang H, Chen T L, et al. SP:an advanced surface-potential-based compact MOSFET model. IEEE J Solid-State Circuits, 2004, 39(9):1394 doi: 10.1109/JSSC.2004.831604[4] John D L, Allerstam F, Rodle T, et al. A surface-potential based model for GaN HEMTs in RF power amplifier applications. IEEE International Electron Devices Meeting (IEDM), 2010:8.3.1 http://ieeexplore.ieee.org/document/5703321/authors[5] Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888[6] Cheng X, Li M, Wang Y. Physics-based compact model for AlGaN/GaN MODFETs with close-formed I-V and C-V characteristics. IEEE Trans Electron Devices, 2009, 56(12):2881 doi: 10.1109/TED.2009.2030722[7] Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229[8] Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902[9] Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196[10] Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229[11] Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902[12] Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888[13] Agilent Technologies, ICCAP Software Documentation. Palo Alto, CA: Agilent Technologies Inc. , 2009[14] Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196[15] Kallfass I, Schumacher H, Brazil T J. A unified approach to charge-conservative capacitance modeling in HEMTs. IEEE Trans Microw Wireless Compon Lett, 2006, 16(12):678 doi: 10.1109/LMWC.2006.885627[16] Cao Y, Chen X, Wang G. Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network. IEEE Trans Electron Devices, 2009, 56(5):1020 doi: 10.1109/TED.2009.2016029[17] Kumar S P, Agrawal A, Chaujar R, et al. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation. Microelectron J, 2007, 38(10):1013 http://sdrl-does.edsdelhi.org/downloads/52.pdf[18] Xi X J, He J, Dunga M, et al. BSIM5 MOSFET model. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004:920 http://ieeexplore.ieee.org/document/1436657/[19] Gildenblat G, Li X, Wu W, et al. PSP:an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans Electron Devices, 2006, 53(9):1979 doi: 10.1109/TED.2005.881006[20] Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFETs. IEEE Trans Electron Devices, 2011, 58(2):448 doi: 10.1109/TED.2010.2089690[21] Khandelwal S, Chauhan Y S, Fjeldly T A. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2012, 59(10):2856 doi: 10.1109/TED.2012.2209654[22] Khandelwal S, Yadav C, Agnihotri S, et al. Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans Electron Devices, 2013, 60(10):3216 doi: 10.1109/TED.2013.2265320[23] Pao H C, Sah C T. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron, 1966, 9(10):927 doi: 10.1016/0038-1101(66)90068-2[24] Wu W, Li X, Wang H, et al. SP-SOI:third generation surface potential based compact SOI MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2005:819 http://ieeexplore.ieee.org/document/1568795/[25] Rios R, Mudanai S, Shih W K, et al. An efficient surface potential solution algorithm for compact MOSFET models. IEEE International Electron Devices Meeting (IEDM), 2004:755 http://ieeexplore.ieee.org/document/1419282/?arnumber=1419282&filter%3DAND(p_IS_Number:30682)[26] Gildenblat G, Chen T L, Gu X, et al. SP:an advanced surface-potential-based compact MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2003:233[27] Gildenblat G, Chen T L. Overview of an advanced surface-potential-based MOSFET model (SP). Tech Proc 5th Int Conf Modeling and Simulation of Microsystems, Boston, America, 2002:657 http://www.nsti.org/Nanotech2002/WCM2002/WCM2002-GGildenblat.pdf[28] Wang H, Chen T L, Gildenblat G. Quasi-static and nonquasistatic compact MOSFET models based on symmetric linearization of the bulk and inversion charges. IEEE Trans Electron Devices, 2003, 50:2262 doi: 10.1109/TED.2003.818596[29] Li X, Wu W, Gildenblat G, et al. PSP model manual. 2009. Online Available: http://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp103p1_summary.pdf[30] Ward D E, Dutton R W. A charge-oriented model for MOS transistor capacitances. IEEE J Solid-State Circuits, 1978, 13(5):703 doi: 10.1109/JSSC.1978.1051123[31] Liu J, Yu Z, Sun L. An accurate surface-potential based large-signal model for HEMTs. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2012), Denver, Colorado, USA, 2012[32] Van Langevelde R, Paasschens J, Scholten A, et al. New compact model for induced gate current noise. IEEE International Electron Devices Meeting (IEDM) Tech Dig, Washington DC, America, 2003:867[33] Paasschens J C J, Scholten A J, van Langevelde R. Generalizations of the Klaassen-Prins equation for calculating the noise of semiconductor device. IEEE Trans Electron Devices, 2005, 52(11):2463 doi: 10.1109/TED.2005.857189[34] Darwish A M, Bayba A J, Huang H A. Thermal resistance calculation of AlGaN-GaN devices. IEEE Trans Microw Theory Tech, 2004, 52(11):2611 doi: 10.1109/TMTT.2004.837200[35] Wang J, Sun L, Liu J, et al. A surface-potential-based model for AlGaN/AlN/GaN HEMT. Journal of Semiconductors, 2013, 34(9):094002 doi: 10.1088/1674-4926/34/9/094002 -
Proportional views