J. Semicond. > 2014, Volume 35 > Issue 4 > 044007

SEMICONDUCTOR DEVICES

Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes

Dawei Yan1, Lisha Li1, Jian Ren1, Fuxue Wang1, Guofeng Yang2, Shaoqing Xiao1 and Xiaofeng Gu1,

+ Author Affiliations

 Corresponding author: Gu Xiaofeng, Email: xgu@jiangnan.edu.cn

DOI: 10.1088/1674-4926/35/4/044007

PDF

Abstract: The typical light emission efficiency behaviors of InGaN/GaN multi-quantum well (MQW) blue light-emitting diodes (LEDs) grown on c-plane sapphire substrates are characterized by pulsed current operation mode in the temperature range 40 to 300 K. At temperatures lower than 80 K, the emission efficiency of the LEDs decreases approximately as an inverse square root relationship with drive current. We use an electron leakage model to explain such efficiency droop behavior; that is, the excess electron leakage into the p-side of the LEDs under high forward bias will significantly reduce the injection possibility of holes into the active layer, which in turn leads to a rapid reduction in the radiative recombination efficiency in the MQWs. Combining the electron leakage model and the quasi-neutrality principle in the p-type region, we can readily derive the inverse square root dependent function between the light emission efficiency and the drive current. It appears that the excess electron leakage into the p-type side of the LEDs is primarily responsible for the low-temperature efficiency droop behavior.

Key words: gallium nitridelight-emitting diodeemission efficiencyelectron leakage



[1]
Lester S D, Ponce F A, Graford M G, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl Phys Lett, 1995, 66:1249 doi: 10.1063/1.113252
[2]
Yang Y, Cao X A, Yan C. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans Electron Devices, 2008, 55:1771 doi: 10.1109/TED.2008.923561
[3]
Iveland J, Martinelli L, Peretti J, et al. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection:identification of the dominant mechanism for efficiency droop. Phys Rev Lett, 2013, 110:177406 doi: 10.1103/PhysRevLett.110.177406
[4]
Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91:183507 doi: 10.1063/1.2800290
[5]
Mukai T, Yamada M, Nakamura S J. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys Part 1, 1999, 38:3976 doi: 10.1143/JJAP.38.3976
[6]
Masui H, Kroemer H, Schmidt M C, et al. Electroluminescence efficiency of-oriented InGaN-based light-emitting diodes at low temperature. J Phys D:Appl Phys, 2008, 41:0822001 http://cat.inist.fr/?aModele=afficheN&cpsidt=20270880
[7]
Choi S, Ji M H, Kim J, et al. Efficiency droop due to electron spill-over and limited hole injection in Ⅲ-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Appl Phys Lett, 2012, 101:161110 doi: 10.1063/1.4759044
[8]
Bertazzi F, Goano M, Bellotti E. Numerical analysis of indirect Auger transitions in InGaN. Appl Phys Lett, 2012, 101:011111 doi: 10.1063/1.4733353
[9]
Cao X A, Stokes E B, Sandvik P M, et al. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett, 2002, 23:535 doi: 10.1109/LED.2002.802601
[10]
Piprek J. Semiconductor optoelectronic devices:introduction to physics and simulation. Academic Press, 2007
[11]
Shao X J, Lu H, Chen D J, et al. Efficiency droop behavior of GaN-based light emitting diodes under reverse-current and high-temperature stress. Appl Phys Lett, 2009, 95:163504 doi: 10.1063/1.3254237
[12]
Yan D W, Lu H, Chen D J, et al. Forward tunneling current in GaN-based blue light-emitting diodes. Appl Phys Lett, 2010, 96:083504 doi: 10.1063/1.3327332
[13]
Masui H, Sato H, Asamizu H, et al. Radiative recombination efficiency of InGaN-Based light-emitting diodes evaluated at various temperatures and injection currents. Jpn J Appl Phys, 2007, 46:L627 http://stacks.iop.org/1347-4065/46/L627
[14]
Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solid A, 2010, 207:2217 doi: 10.1002/pssa.v207:10
[15]
Yang Y, Cao X A, Yan C H. Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates. Appl Phys Lett, 2009, 94:041117 doi: 10.1063/1.3077017
[16]
Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GalnN/GaN light-emitting diodes. Appl Phys Lett, 2007, 91:231114 doi: 10.1063/1.2822442
Fig. 1.  Schematic cross section of an InGaN/GaN MQW blue LED grown on sapphire substrates.

Fig. 2.  Emission efficiency (P/I) as a function of drive current measured at various temperatures. The drive current (x-axis) is plotted in a semi-log scale. Typical efficiency droop behavior was observed at T > 200 K.

Fig. 3.  The typical I--V curves of the LEDs measured below 100 K. The extracted ideality factors at 80 K in the low-and medium-bias regions are 19.5 and 7.5, respectively, indicating the dominant tunneling mechanism. In the bias region (c), the current transport is influenced by a bulk resistance effect.

Fig. 4.  Schematic illustration of the current components in the LEDs at high drive biases.

Fig. 5.  The dependence of the LED emission efficiency on the drive current at 80 K. The solid line is the theoretical fitting result with m = 0.5.

[1]
Lester S D, Ponce F A, Graford M G, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl Phys Lett, 1995, 66:1249 doi: 10.1063/1.113252
[2]
Yang Y, Cao X A, Yan C. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans Electron Devices, 2008, 55:1771 doi: 10.1109/TED.2008.923561
[3]
Iveland J, Martinelli L, Peretti J, et al. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection:identification of the dominant mechanism for efficiency droop. Phys Rev Lett, 2013, 110:177406 doi: 10.1103/PhysRevLett.110.177406
[4]
Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91:183507 doi: 10.1063/1.2800290
[5]
Mukai T, Yamada M, Nakamura S J. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys Part 1, 1999, 38:3976 doi: 10.1143/JJAP.38.3976
[6]
Masui H, Kroemer H, Schmidt M C, et al. Electroluminescence efficiency of-oriented InGaN-based light-emitting diodes at low temperature. J Phys D:Appl Phys, 2008, 41:0822001 http://cat.inist.fr/?aModele=afficheN&cpsidt=20270880
[7]
Choi S, Ji M H, Kim J, et al. Efficiency droop due to electron spill-over and limited hole injection in Ⅲ-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Appl Phys Lett, 2012, 101:161110 doi: 10.1063/1.4759044
[8]
Bertazzi F, Goano M, Bellotti E. Numerical analysis of indirect Auger transitions in InGaN. Appl Phys Lett, 2012, 101:011111 doi: 10.1063/1.4733353
[9]
Cao X A, Stokes E B, Sandvik P M, et al. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett, 2002, 23:535 doi: 10.1109/LED.2002.802601
[10]
Piprek J. Semiconductor optoelectronic devices:introduction to physics and simulation. Academic Press, 2007
[11]
Shao X J, Lu H, Chen D J, et al. Efficiency droop behavior of GaN-based light emitting diodes under reverse-current and high-temperature stress. Appl Phys Lett, 2009, 95:163504 doi: 10.1063/1.3254237
[12]
Yan D W, Lu H, Chen D J, et al. Forward tunneling current in GaN-based blue light-emitting diodes. Appl Phys Lett, 2010, 96:083504 doi: 10.1063/1.3327332
[13]
Masui H, Sato H, Asamizu H, et al. Radiative recombination efficiency of InGaN-Based light-emitting diodes evaluated at various temperatures and injection currents. Jpn J Appl Phys, 2007, 46:L627 http://stacks.iop.org/1347-4065/46/L627
[14]
Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solid A, 2010, 207:2217 doi: 10.1002/pssa.v207:10
[15]
Yang Y, Cao X A, Yan C H. Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates. Appl Phys Lett, 2009, 94:041117 doi: 10.1063/1.3077017
[16]
Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GalnN/GaN light-emitting diodes. Appl Phys Lett, 2007, 91:231114 doi: 10.1063/1.2822442
1

Reactive facet of carbon nitride single crystals

Kong Liu

Journal of Semiconductors, 2020, 41(9): 090202. doi: 10.1088/1674-4926/41/9/090202

2

Warm white light emission

Dehui Li

Journal of Semiconductors, 2019, 40(2): 020202. doi: 10.1088/1674-4926/40/2/020202

3

Hydride vapor phase epitaxy for gallium nitride substrate

Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, et al.

Journal of Semiconductors, 2019, 40(10): 101801. doi: 10.1088/1674-4926/40/10/101801

4

Rational molecular passivation for high-performance perovskite light-emitting diodes

Jingbi You

Journal of Semiconductors, 2019, 40(4): 040203. doi: 10.1088/1674-4926/40/4/040203

5

Light-emitting diodes based on colloidal silicon quantum dots

Shuangyi Zhao, Xiangkai Liu, Xiaodong Pi, Deren Yang

Journal of Semiconductors, 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008

6

Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer

Xiang Li, Degang Zhao, Desheng Jiang, Ping Chen, Zongshun Liu, et al.

Journal of Semiconductors, 2016, 37(1): 014007. doi: 10.1088/1674-4926/37/1/014007

7

Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang, et al.

Journal of Semiconductors, 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

8

Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes

Hui Wang, Yingxi Niu, Fei Yang, Yong Cai, Zehong Zhang, et al.

Journal of Semiconductors, 2015, 36(10): 104006. doi: 10.1088/1674-4926/36/10/104006

9

AC-electronic and dielectric properties of semiconducting phthalocyanine compounds:a comparative study

Safa'a M. Hraibat, Rushdi M-L. Kitaneh, Mohammad M. Abu-Samreh, Abdelkarim M. Saleh

Journal of Semiconductors, 2013, 34(11): 112001. doi: 10.1088/1674-4926/34/11/112001

10

Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes

Maoxing Chen, Chen Xu, Kun Xu, Lei Zheng

Journal of Semiconductors, 2013, 34(12): 124005. doi: 10.1088/1674-4926/34/12/124005

11

Degradation of light emitting diodes: a proposed methodology

Sau Koh, Willem Van Driel, G. Q. Zhang

Journal of Semiconductors, 2011, 32(1): 014004. doi: 10.1088/1674-4926/32/1/014004

12

Fluorescent SiC and its application to white light-emitting diodes

Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi, Isamu Akasaki, Mikael Syvajarvi, et al.

Journal of Semiconductors, 2011, 32(1): 013004. doi: 10.1088/1674-4926/32/1/013004

13

Properties of the ITO layer in a novel red light-emitting diode

Zhang Yonghui, Guo Weiling, Gao Wei, Li Chunwei, Ding Tianping, et al.

Journal of Semiconductors, 2010, 31(4): 043002. doi: 10.1088/1674-4926/31/4/043002

14

Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode

Ye Zhizhen, Zhang Liqiang, Huang Jingyun, Zhang Yinzhu, Zhu Liping, et al.

Journal of Semiconductors, 2009, 30(8): 081001. doi: 10.1088/1674-4926/30/8/081001

15

Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

Liu Xiang, Wei Fuxiang, Liu Hui

Journal of Semiconductors, 2009, 30(4): 044007. doi: 10.1088/1674-4926/30/4/044007

16

Thermal Simulation and Analysis of High Power Flip-Chip Light-Emitting Diode System

Wang Libin, Liu Zhiqiang, Chen Yu, Yi Xiaoyan, Ma Long, et al.

Chinese Journal of Semiconductors , 2007, 28(S1): 504-508.

17

Influence of an Omni-Directional Reflector on the Luminous Efficiency of AlGaInP Light-Emitting Diodes

Sun Hao, Han Jun, Li Jianjun, Deng Jun, Zou Deshu, et al.

Chinese Journal of Semiconductors , 2007, 28(12): 1952-1956.

18

Electronic Structure of Semiconductor Nanocrystals

Li Jingbo, Wang Linwang, Wei Suhuai

Chinese Journal of Semiconductors , 2006, 27(2): 191-196.

19

A High Performance Sub-100nm Nitride/Oxynitride Stack Gate Dielectric CMOS Device with Refractory W/TiN Metal Gates

Zhong Xinghua, Zhou Huajie, Lin Gang, Xu Qiuxia

Chinese Journal of Semiconductors , 2006, 27(3): 448-453.

20

Fabrication and Emission Properties of a n-ZnO/p-GaN Heterojunction Light-Emitting Diode

Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei, et al.

Chinese Journal of Semiconductors , 2006, 27(2): 249-253.

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2409 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 21 September 2013 Revised: 20 November 2013 Online: Published: 01 April 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dawei Yan, Lisha Li, Jian Ren, Fuxue Wang, Guofeng Yang, Shaoqing Xiao, Xiaofeng Gu. Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes[J]. Journal of Semiconductors, 2014, 35(4): 044007. doi: 10.1088/1674-4926/35/4/044007 ****D W Yan, L S Li, J Ren, F X Wang, G F Yang, S Q Xiao, X F Gu. Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes[J]. J. Semicond., 2014, 35(4): 044007. doi: 10.1088/1674-4926/35/4/044007.
      Citation:
      Dawei Yan, Lisha Li, Jian Ren, Fuxue Wang, Guofeng Yang, Shaoqing Xiao, Xiaofeng Gu. Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes[J]. Journal of Semiconductors, 2014, 35(4): 044007. doi: 10.1088/1674-4926/35/4/044007 ****
      D W Yan, L S Li, J Ren, F X Wang, G F Yang, S Q Xiao, X F Gu. Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes[J]. J. Semicond., 2014, 35(4): 044007. doi: 10.1088/1674-4926/35/4/044007.

      Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes

      DOI: 10.1088/1674-4926/35/4/044007
      Funds:

      the National Natural Science Foundation of China 11074280

      the Natural Science Foundation of Jiangsu Province, China BK2012110

      the State Key Laboratory of ASIC and System 11KF003

      the Chinese Postdoctoral Science Foundation 2013M540437

      Project supported by the National Natural Science Foundation of China (No. 11074280), the Natural Science Foundation of Jiangsu Province, China (No. BK2012110), the Fundamental Research Funds for the Central Universities of China (No. JUSRP51323B), the Chinese Postdoctoral Science Foundation (No. 2013M540437), the State Key Laboratory of ASIC and System (No. 11KF003), and the PAPD of Jiangsu Higher Education Institutions and the Summit of the Six Top Talents Program of Jiangsu Province (No. DZXX-053)

      the PAPD of Jiangsu Higher Education Institutions and the Summit of the Six Top Talents Program of Jiangsu Province DZXX-053

      More Information
      • Corresponding author: Gu Xiaofeng, Email: xgu@jiangnan.edu.cn
      • Received Date: 2013-09-21
      • Revised Date: 2013-11-20
      • Published Date: 2014-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return