Citation: |
Wentao Guo, Manqing Tan, Jian Jiao, Xiaofeng Guo, Ningning Sun. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency[J]. Journal of Semiconductors, 2014, 35(8): 084007. doi: 10.1088/1674-4926/35/8/084007
****
W T Guo, M Q Tan, J Jiao, X F Guo, N N Sun. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency[J]. J. Semicond., 2014, 35(8): 084007. doi: 10.1088/1674-4926/35/8/084007.
|
980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency
DOI: 10.1088/1674-4926/35/8/084007
More Information
-
Abstract
The coupling cavity theory is used to analyze the impact of high side mode suppression ratio (SMSR) on fiber grating external cavity semiconductor lasers (FGECSL). The high SMSR and high stable frequency FGECSLs were obtained by experiment. The center wavelength is 974 nm, SMSR is 45 dB, the center wavelength change rate reaches 3.08 ppm/℃ in the temperature range of -20 to 80℃.-
Keywords:
- FGECSL,
- SMSR,
- stable frequency,
- antireflection film
-
References
[1] Dong Zhen, Wang Cuiluan, Jing Hongqi, et al. High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current. Journal of Semiconductors, 2013, 34(11):114011 doi: 10.1088/1674-4926/34/11/114011[2] Li Y, Huang Y, Wang H, et al. Wavelength stabilizer with dual fiber Bragg grating for 980 nm semiconductor laser. Optics and Precision Engineering, 2010, 18(7):1468 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXJM201007002.htm[3] Giles C, Erdogan T, Mizrahi V. Reflection-induced changes in the optical spectra of 980-nm QW lasers. IEEE Photonics Technol Lett, 1994, 6(8):903 doi: 10.1109/68.313047[4] Oosenbrug A, Latta E E. High-power operational stability of 980 nm pump lasers for EDFA applications. Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting, 1994, 2:37 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=586303[5] Huang Yize, Li Yi, Wang Haifang, et al. Wavelength stabilization of a 980-nm semiconductor laser module stabilized with high-power uncooled dual FBG. Chinese Optics Letters, 2011, 9(3):031403 doi: 10.3788/COL[6] Osmundsen J, Gade N. Influence of optical feedback on laser frequency spectrum and threshold conditions. IEEE J Quantum Electron, 1983, 19(3):465 doi: 10.1109/JQE.1983.1071857[7] Cheng W, Chiu S, Hong C, et al. Spectral characteristics for a fiber grating external cavity laser. Optical and Quantum Electronics, 2000, 32(3):339 doi: 10.1023/A:1007044320912[8] Edwards C A, Presby H M, Dragone C. Ideal microlenses for laser to fiber coupling. J Lightwave Technol, 1993, 11(2):252 doi: 10.1109/50.212535[9] Davis M K, Ghislotti G, Balsamo S, et al. Grating stabilization design for high-power 980-nm semiconductor pump lasers. IEEE J Sel Topics Quantum Electron, 2005, 11(5):1197 doi: 10.1109/JSTQE.2005.853850[10] Zorabedian P, Trutna W, Cutler L. Bistability in grating-tuned external-cavity semiconductor lasers. IEEE J Quantum Electron, 1987, 23(11):1855 doi: 10.1109/JQE.1987.1073263[11] Xia G, Wu Z, Chen J, et al. Studying semiconductor lasers with multimode rate equations. Appl Opt, 1995, 34(9):1523 doi: 10.1364/AO.34.001523[12] Pliska T, Arlt S, Ttig R B, et al. Wavelength stabilized 980 nm uncooled pump laser modules for erbium-doped fiber amplifiers. Opt Lasers Eng, 2005, 43(3):271 http://www.sciencedirect.com/science/article/pii/S0143816604000910 -
Proportional views