Citation: |
Yurong Bai, Jingping Xu, Lu Liu, Minmin Fan. Simulation of electrical characteristics and structural optimization for small-scaled dual-gate GeOI MOSFET with high-k gate dielectric[J]. Journal of Semiconductors, 2014, 35(9): 094002. doi: 10.1088/1674-4926/35/9/094002
****
Y R Bai, J P Xu, L Liu, M M Fan. Simulation of electrical characteristics and structural optimization for small-scaled dual-gate GeOI MOSFET with high-k gate dielectric[J]. J. Semicond., 2014, 35(9): 094002. doi: 10.1088/1674-4926/35/9/094002.
|
Simulation of electrical characteristics and structural optimization for small-scaled dual-gate GeOI MOSFET with high-k gate dielectric
DOI: 10.1088/1674-4926/35/9/094002
More Information
-
Abstract
The influences of the main structure and physical parameters of the dual-gate GeOI MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) channel thickness, doping concentration, gate oxide thickness and permittivity is determined by analyzing the on-state current, off-state current, short channel effect (SCE) and drain-induced barrier lowering (DIBL) effect of the GeOI MOSFET. When the channel thickness and its doping concentration are 10-18 nm and (5-9)×1017 cm-3, and the equivalent oxide thickness and permittivity of the gate dielectric are 0.8-1 nm and 15-30, respectively, excellent device performances of the small-scaled GeOI MOSFET can be achieved:on-state current of larger than 1475 μA/μm, off-state current of smaller than 0.1 μA/μm, SCE-induced threshold-voltage drift of lower than 60 mV and DIBL-induced threshold-voltage drift of lower than 140 mV. -
References
[1] Paussa A, Conzatti F, Breda D, et al. Pseudospectral methods for the efficient simulation of quantization effects in nanoscale MOS transistors. IEEE Trans Electron Devices, 2012, 57(12):104002 http://ieeexplore.ieee.org/document/5610722/[2] Hu Aibin, Xu Qiuxia. Effects of silicon nitride diffusion barrier on germanium MOS capacitors with HfON gate dielectrics. Journal of Semiconductors, 2009, 30(10):59 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=09031501&flag=1[3] Hu V P H, Fan M L, Su P, et al. Analysis of power-performance for ultra-thin-body GeOI logic circuits. Low Power Electronics and Design International Symposium, Fukuoka, 2011:115 http://ieeexplore.ieee.org/Xplore/home.jsp[4] Van Den Daelea W, Augendre E, Le Royer C, et al. Low-temperature characterization and modeling of advanced GeOI pMOSFETs:mobility mechanisms and origin of the parasitic conduction. Solid-State Electron, 2010, 54(2):205 doi: 10.1016/j.sse.2009.12.020[5] Romanjek K, Hutin L, Le Royer C, et al. High performance 70 nm gate length germanium-on-insulator pMOSFET with high-k/metal gate. Microelectron Eng, 2009, 53(7):723 http://ieeexplore.ieee.org/document/4681702/[6] Romanjek K, Augendre E, Van Den Daele W, et al. Improved GeOI substrates for pMOSFET off-state leakage control. Microelectron Eng, 2009, 86(7-9):1585 doi: 10.1016/j.mee.2009.03.069[7] Yu C H, Wu Y S, Hu V P H, et al. Impact of quantum confinement on backgate-bias modulated threshold-voltage and subthreshold characteristics for ultra-thin-body GeOI MOSFETs. IEEE Trans Electron Devices, 2012, 59(7):1851 doi: 10.1109/TED.2012.2194499[8] Yu C H, Wu Y S, Hu V P H, et al. Impact of quantum confinement on subthreshold swing and electrostatic integrity of ultra-thin-body GeOI and InGaAs-OI n-MOSFETs. IEEE Trans Nanotechnology, 2012, 11(2):287 doi: 10.1109/TNANO.2011.2169084[9] Liu K M, Hsieh Y Y. Investigation of the dimension effects of 30-nm below multiple-gate SOI MOSFETs by TCAD simulation. IEEE 4th INEC, Tao-Yuan, 2011:1 http://ieeexplore.ieee.org/document/5991679/?arnumber=5991679&contentType=Conference%20Publications[10] Yuki T, Yasuhisa O. Empirical quantitative modeling of threshold voltage of sub-50-nm double-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Jpn J Appl Phys, 2006, 45(4B):3074 doi: 10.1143/JJAP.45.3074[11] Louis H, Cyrille L R, Jean F D, et al. GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current. IEEE Electron Device Lett, 2010, 31(3):234 doi: 10.1109/LED.2009.2038289[12] Wu Y S, Hsieh H Y, Hu V P H, et al. Impact of quantum confinement on short-channel effects for ultrathin-body germanium-on-insulator MOSFETs. IEEE Electron Device Lett, 2011, 32(1):18 doi: 10.1109/LED.2010.2089425[13] Hutin L, Royer C L, Damlencourt J F, et al. GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current. IEEE Electron Device Lett, 2010, 31(3):324 http://ieeexplore.ieee.org/document/5398976/[14] Technology Roadmap for Semiconductors (ITRS) 2012. http://www.itrs.net[15] Wu Meile, Jin Xiaoshi, Chuai Rongyan, et al. Simulation study on short channel double-gate junctionless field-effect transistors. Journal of Semiconductors, 2013, 34(12):124001 doi: 10.1088/1674-4926/34/12/124001[16] Razavi P, Orouji A A. Dual material gate oxide stack symmetric double gate MOSFET:improving short channel effects of nanoscale double gate MOSFET. International Biennial Baltic Electronics Conference, Tallinn, 2008:83 http://ieeexplore.ieee.org/document/4657483/?reload=true&arnumber=4657483&punumber%3D4651691[17] Hu V P H, Fan M L, Su P, et al. Band-to-band-tunneling leakage suppression for ultra-thin-body GeOI MOSFETs using transistor stacking. IEEE Electron Device Lett, 2012, 33(2):197 doi: 10.1109/LED.2011.2177955[18] Liu H X, Ma F, Fan J B, et al. Off-state leakage current of nano-scaled MOSFETs with high-k gate dielectric. IEEE 11th International Conference Solid-State and Integrated Circuit Technology, Xi'an, 2012:1 http://ieeexplore.ieee.org/document/4657483/?reload=true&arnumber=4657483&punumber%3D4651691[19] Chen H F, Guo L X. Influence of gate voltage on gate-induced drain leakage current in ultra-thin gate oxide and ultra-short channel LDD nMOSFET's. Acta Phys Sin, 2012, 61(2):2 http://www.sciencedirect.com/science/article/pii/S0026271499002048 -
Proportional views