Processing math: 100%
J. Semicond. > 2016, Volume 37 > Issue 10 > 104003

SEMICONDUCTOR DEVICES

Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates

Dongxue Wu1, 2, 3, Ping Ma1, 2, 3, , Boting Liu1, 2, 3, Shuo Zhang1, 2, 3, Junxi Wang1, 2, 3 and Jinmin Li1, 2, 3

+ Author Affiliations

 Corresponding author: Ma Ping, maping@semi.ac.cn

DOI: 10.1088/1674-4926/37/10/104003

PDF

Abstract: The effect of patterned sapphire substrate (PSS) on the top-surface (P-GaN-surface) and the bottom-surface (sapphire-surface) of the light output power (LOP) of GaN-based LEDs was investigated, in order to study the changes in reflection and transmission of the GaN-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of GaN-based LEDs, which are prepared on patterned sapphire substrates (PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates (CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-GaN interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency (LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design.

Key words: light output powertransmissioneffective reflectionpatterned sapphire substratelight-emitting diodes



[1]
Wang L, Zhang Y, Li X, et al. Partially sandwiched graphene as transparent conductive layer for InGaN-based vertical light emitting diodes. Appl Phys Lett, 2012, 101(6): 061102 doi: 10.1063/1.4742892
[2]
Zhang Y, Wei T, Wang J, et al. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing. AIP Advances, 2014, 4(2): 027123 doi: 10.1063/1.4867091
[3]
Kim H G, Na M G, Kim H K, et al. Effect of periodic deflector embedded in InGaN/GaN light emitting diode. Appl Phys Lett, 2007, 90(26): 261117 doi: 10.1063/1.2752777
[4]
Lee Y J, Hsu T C, Kuo H C, et al. Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates. Mater Sci Eng B, 2005, 122(3): 184 doi: 10.1016/j.mseb.2005.05.019
[5]
Wu D S, Wang W K, Wen K S, et al. Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template. Appl Phys Lett, 2006, 89(16): 161105 doi: 10.1063/1.2363148
[6]
Cui H, Park S H. Numerical simulations of light-extraction efficiencies of light-emitting diodes on micro and nanopatterned sapphire substrates. Micro Nano Lett, 2014, 9(12): 841 doi: 10.1049/mnl.2014.0373
[7]
Du C, Wei T, Zheng H, et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express, 2013, 21(21): 25373 doi: 10.1364/OE.21.025373
[8]
Yamada M, Mitani T, Narukawa Y, et al. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn J Appl Phys, 2002, 41(12B): L1431
[9]
Tadatomo K, Okagawa H, Ohuchi Y, et al. High output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy. Third International Conference on Solid State Lighting, 2004: 243
[10]
Wang C C, Ku H, Liu C C, et al. Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure. Appl Phys Lett, 2007, 91(12): 121109 doi: 10.1063/1.2786015
[11]
Gao H, Yan F, Zhang Y, et al. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale. J Appl Phys, 2008, 103(1): 014314 doi: 10.1063/1.2830981
[12]
Cuong T V, Cheong H S, Kim H G, et al. Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning. Appl Phys Lett, 2007, 90(13): 131107 doi: 10.1063/1.2714203
[13]
An Tielei, Sun Bo, Wei Tongbo, et al. Light-extraction enhancement of freestanding GaN-based flip-chip light-emitting diodes using two-step roughening methods. Journal of Semiconductors, 2013, 34(11): 114006 doi: 10.1088/1674-4926/34/11/114006
[14]
Pan J W, Tsai P J, Chang K D, et al. Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates. Appl Opt, 2013, 52(7): 1358 doi: 10.1364/AO.52.001358
[15]
Lee J H, Oh J T, Kim Y C, et al. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photon Technol Lett, 2008, 20(17-20): 1563
[16]
Skaar J. Fresnel equations and the refractive index of active media. Phys Rev E, 2006, 73(2): 026605 doi: 10.1103/PhysRevE.73.026605
[17]
Ding Q A, Li K, Kong F, et al. Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonic crystals. IEEE J Quantum Electron, 2015, 51(2): 1
[18]
Lee Y J, Kuo H C, Lu T C, et al. Fabrication and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates. J Electrochem Soc, 2006, 153(12): G1106 doi: 10.1149/1.2359701
[19]
Lee T X, Lin C Y, Ma S H, et al. Analysis of position-dependent light extraction of GaN-based LEDs. Opt Express, 2005, 13(11): 4175 doi: 10.1364/OPEX.13.004175
[20]
Chen Maoxing, Xu Chen, Xu Kun, et al. Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes. Journal of Semiconductors, 2013, 34(12): 124005 doi: 10.1088/1674-4926/34/12/124005
Fig. 1.  (Color online) Schematic illustration of Trace-Pro simulation models: (a) PSS-LED, (b) CSS-LED. 151 × 91 mm2 (96 × 96 DPI2).

Fig. 2.  Cross-sectional SEM images of patterns. 127 × 95 mm (256 × 256 DPI2).

Fig. 3.  (Color online) The top and bottom light output power as a function of the injection current for LEDs grown on PSS and CSS.

Fig. 4.  A schematic of the possible interactions of a beam of light with a surface with different refractive indexes. 143 × 112 mm2 (96 × 96 DPI2).

Fig. 5.  Reflection coefficient as a function of the incident angle of θi: R-θi curve. 252 × 163 mm2 (96 × 96 DPI2).

Fig. 6.  A schematic ray-tracing of light. 254 × 190 mm (96 × 96 DPI).

Table 1.   The absorbed power by various monitors.

[1]
Wang L, Zhang Y, Li X, et al. Partially sandwiched graphene as transparent conductive layer for InGaN-based vertical light emitting diodes. Appl Phys Lett, 2012, 101(6): 061102 doi: 10.1063/1.4742892
[2]
Zhang Y, Wei T, Wang J, et al. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing. AIP Advances, 2014, 4(2): 027123 doi: 10.1063/1.4867091
[3]
Kim H G, Na M G, Kim H K, et al. Effect of periodic deflector embedded in InGaN/GaN light emitting diode. Appl Phys Lett, 2007, 90(26): 261117 doi: 10.1063/1.2752777
[4]
Lee Y J, Hsu T C, Kuo H C, et al. Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates. Mater Sci Eng B, 2005, 122(3): 184 doi: 10.1016/j.mseb.2005.05.019
[5]
Wu D S, Wang W K, Wen K S, et al. Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template. Appl Phys Lett, 2006, 89(16): 161105 doi: 10.1063/1.2363148
[6]
Cui H, Park S H. Numerical simulations of light-extraction efficiencies of light-emitting diodes on micro and nanopatterned sapphire substrates. Micro Nano Lett, 2014, 9(12): 841 doi: 10.1049/mnl.2014.0373
[7]
Du C, Wei T, Zheng H, et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express, 2013, 21(21): 25373 doi: 10.1364/OE.21.025373
[8]
Yamada M, Mitani T, Narukawa Y, et al. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn J Appl Phys, 2002, 41(12B): L1431
[9]
Tadatomo K, Okagawa H, Ohuchi Y, et al. High output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy. Third International Conference on Solid State Lighting, 2004: 243
[10]
Wang C C, Ku H, Liu C C, et al. Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure. Appl Phys Lett, 2007, 91(12): 121109 doi: 10.1063/1.2786015
[11]
Gao H, Yan F, Zhang Y, et al. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale. J Appl Phys, 2008, 103(1): 014314 doi: 10.1063/1.2830981
[12]
Cuong T V, Cheong H S, Kim H G, et al. Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning. Appl Phys Lett, 2007, 90(13): 131107 doi: 10.1063/1.2714203
[13]
An Tielei, Sun Bo, Wei Tongbo, et al. Light-extraction enhancement of freestanding GaN-based flip-chip light-emitting diodes using two-step roughening methods. Journal of Semiconductors, 2013, 34(11): 114006 doi: 10.1088/1674-4926/34/11/114006
[14]
Pan J W, Tsai P J, Chang K D, et al. Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates. Appl Opt, 2013, 52(7): 1358 doi: 10.1364/AO.52.001358
[15]
Lee J H, Oh J T, Kim Y C, et al. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photon Technol Lett, 2008, 20(17-20): 1563
[16]
Skaar J. Fresnel equations and the refractive index of active media. Phys Rev E, 2006, 73(2): 026605 doi: 10.1103/PhysRevE.73.026605
[17]
Ding Q A, Li K, Kong F, et al. Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonic crystals. IEEE J Quantum Electron, 2015, 51(2): 1
[18]
Lee Y J, Kuo H C, Lu T C, et al. Fabrication and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates. J Electrochem Soc, 2006, 153(12): G1106 doi: 10.1149/1.2359701
[19]
Lee T X, Lin C Y, Ma S H, et al. Analysis of position-dependent light extraction of GaN-based LEDs. Opt Express, 2005, 13(11): 4175 doi: 10.1364/OPEX.13.004175
[20]
Chen Maoxing, Xu Chen, Xu Kun, et al. Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes. Journal of Semiconductors, 2013, 34(12): 124005 doi: 10.1088/1674-4926/34/12/124005
1

Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons

Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, et al.

Journal of Semiconductors, 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204

2

The strategies for preparing blue perovskite light-emitting diodes

Jianxun Lu, Zhanhua Wei

Journal of Semiconductors, 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203

3

Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition

Boning Han, Qingsong Shan, Fengjuan Zhang, Jizhong Song, Haibo Zeng, et al.

Journal of Semiconductors, 2020, 41(5): 052205. doi: 10.1088/1674-4926/41/5/052205

4

Rational molecular passivation for high-performance perovskite light-emitting diodes

Jingbi You

Journal of Semiconductors, 2019, 40(4): 040203. doi: 10.1088/1674-4926/40/4/040203

5

A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

Zhang Zhang, Ye Tan, Jianmin Zeng, Xu Han, Xin Cheng, et al.

Journal of Semiconductors, 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003

6

Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method

Pingbo An, Li Wang, Hongxi Lu, Zhiguo Yu, Lei Liu, et al.

Journal of Semiconductors, 2016, 37(6): 064015. doi: 10.1088/1674-4926/37/6/064015

7

Enhancement of blue InGaN light-emitting diodes by using AlGaN increased composition-graded barriers

Yan Lei, Zhiqiang Liu, Miao He, Xiaoyan Yi, Junxi Wang, et al.

Journal of Semiconductors, 2015, 36(5): 054006. doi: 10.1088/1674-4926/36/5/054006

8

Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode

Jingming Chen, Bin Shu, Jibao Wu, Linxi Fan, Heming Zhang, et al.

Journal of Semiconductors, 2015, 36(10): 104004. doi: 10.1088/1674-4926/36/10/104004

9

Performance analysis of silicon nanowire transistors considering effective oxide thickness of high-k gate dielectric

S. Theodore Chandra, N. B. Balamurugan

Journal of Semiconductors, 2014, 35(4): 044001. doi: 10.1088/1674-4926/35/4/044001

10

GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer

Huamao Huang, Jinyong Hu, Hong Wang

Journal of Semiconductors, 2014, 35(8): 084006. doi: 10.1088/1674-4926/35/8/084006

11

Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate

Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, et al.

Journal of Semiconductors, 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

12

Spacing optimization of high power LED arrays for solid state lighting

Y. Sing Chan, S. W. Ricky Lee

Journal of Semiconductors, 2011, 32(1): 014005. doi: 10.1088/1674-4926/32/1/014005

13

Degradation of light emitting diodes: a proposed methodology

Sau Koh, Willem Van Driel, G. Q. Zhang

Journal of Semiconductors, 2011, 32(1): 014004. doi: 10.1088/1674-4926/32/1/014004

14

Improved III-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer

Li Zhicong, Li Panpan, Wang Bing, Li Hongjian, Liang Meng, et al.

Journal of Semiconductors, 2011, 32(11): 114007. doi: 10.1088/1674-4926/32/11/114007

15

Current–voltage characteristics of light-emitting diodes under optical and electrical excitation

Wen Jing, Wen Yumei, Li Ping, Li Lian

Journal of Semiconductors, 2011, 32(8): 084004. doi: 10.1088/1674-4926/32/8/084004

16

Fluorescent SiC and its application to white light-emitting diodes

Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi, Isamu Akasaki, Mikael Syvajarvi, et al.

Journal of Semiconductors, 2011, 32(1): 013004. doi: 10.1088/1674-4926/32/1/013004

17

Properties of the ITO layer in a novel red light-emitting diode

Zhang Yonghui, Guo Weiling, Gao Wei, Li Chunwei, Ding Tianping, et al.

Journal of Semiconductors, 2010, 31(4): 043002. doi: 10.1088/1674-4926/31/4/043002

18

Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode

Ye Zhizhen, Zhang Liqiang, Huang Jingyun, Zhang Yinzhu, Zhu Liping, et al.

Journal of Semiconductors, 2009, 30(8): 081001. doi: 10.1088/1674-4926/30/8/081001

19

High-Power Distributed Feedback Laser Diodes Emitting at 820nm

Fu Shenghui, Zhong Yuan, Song Guofeng, Chen Lianghui

Chinese Journal of Semiconductors , 2006, 27(6): 966-969.

20

Fabrication and Emission Properties of a n-ZnO/p-GaN Heterojunction Light-Emitting Diode

Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei, et al.

Chinese Journal of Semiconductors , 2006, 27(2): 249-253.

1. Liu, S., Yang, J., Zhao, D. et al. Uniform-Sized Indium Quantum Dots Grown on the Surface of an InGaN Epitaxial Layer by a Two-Step Cooling Process. Nanoscale Research Letters, 2019, 14(1): 280. doi:10.1186/s11671-019-3095-7
2. Wang, J., Tao, Q., Hu, C. et al. Fabrication of sapphire rib waveguides using a femtosecond laser. Optoelectronics Letters, 2019, 15(3): 190-194. doi:10.1007/s11801-019-8180-8
3. Liu, S.T., Yang, J., Zhao, D.G. et al. The compensation role of deep defects in the electric properties of lightly Si-doped GaN. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2018.09.333
4. Liu, S.-T., Yang, J., Zhao, D.-G. et al. Influence of carrier gas H2 flow rate on quality of p-type GaN epilayer grown and annealed at lower temperatures. Chinese Physics B, 2018, 27(12): 127803. doi:10.1088/1674-1056/27/12/127803
5. Liu, S.T., Yang, J., Zhao, D.G. et al. The influence of thermal annealing process after GaN cap layer growth on structural and optical properties of InGaN/InGaN multi-quantum wells. Optical Materials, 2018. doi:10.1016/j.optmat.2018.10.034
6. Xing, Y., Zhao, D., Jiang, D. et al. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2018.03.033
7. Liu, W., Zhao, D., Jiang, D. et al. Effect of carrier transfer process between two kinds of localized potential traps on the spectral properties of InGaN/GaN multiple quantum wells. Optics Express, 2018, 26(3): 3424-3434. doi:10.1364/OE.26.003427
8. Liang, F., Zhao, D., Jiang, D. et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. Journal of Crystal Growth, 2017. doi:10.1016/j.jcrysgro.2017.03.009
  • Search

    Advanced Search >>

    GET CITATION

    Shi Yunbo, Lei Tingping, Li Zan, Xiu Debin, Zhao Wenjie, Feng Qiaohua, Wang Liquan. Synthesis of organic semiconductor hexadecachloro zinc phthalocyanine and its gas sensitivity[J]. Journal of Semiconductors, 2009, 30(3): 034009. doi: 10.1088/1674-4926/30/3/034009
    Shi Y B, Lei T P, Li Z, Xiu D B, Zhao W J, Feng Q H, Wang L Q. Synthesis of organic semiconductor hexadecachloro zinc phthalocyanine and its gas sensitivity[J]. J. Semicond., 2009, 30(3): 034009. doi:  10.1088/1674-4926/30/3/034009.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3022 Times PDF downloads: 25 Times Cited by: 8 Times

    History

    Received: 28 January 2016 Revised: 15 April 2016 Online: Published: 01 October 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shi Yunbo, Lei Tingping, Li Zan, Xiu Debin, Zhao Wenjie, Feng Qiaohua, Wang Liquan. Synthesis of organic semiconductor hexadecachloro zinc phthalocyanine and its gas sensitivity[J]. Journal of Semiconductors, 2009, 30(3): 034009. doi: 10.1088/1674-4926/30/3/034009 ****Shi Y B, Lei T P, Li Z, Xiu D B, Zhao W J, Feng Q H, Wang L Q. Synthesis of organic semiconductor hexadecachloro zinc phthalocyanine and its gas sensitivity[J]. J. Semicond., 2009, 30(3): 034009. doi:  10.1088/1674-4926/30/3/034009.
      Citation:
      Dongxue Wu, Ping Ma, Boting Liu, Shuo Zhang, Junxi Wang, Jinmin Li. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates[J]. Journal of Semiconductors, 2016, 37(10): 104003. doi: 10.1088/1674-4926/37/10/104003 ****
      D X Wu, P Ma, B T Liu, S Zhang, J X Wang, J M Li. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates[J]. J. Semicond., 2016, 37(10): 104003. doi: 10.1088/1674-4926/37/10/104003.

      Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates

      DOI: 10.1088/1674-4926/37/10/104003
      Funds:

      Project supported by the National High Technology Program of China (No.Y48A040000) and the National High Technology Program of China (No.Y48A040000)

      the National High Technology Program of China Y48A040000

      the National High Technology Program of China Y48A040000

      More Information
      • Corresponding author: Ma Ping, maping@semi.ac.cn
      • Received Date: 2016-01-28
      • Revised Date: 2016-04-15
      • Published Date: 2016-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return