Citation: |
Bo Ren, Yan Hou, Yanan Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. Journal of Semiconductors, 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001
****
B Ren, Y Hou, Y N Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. J. Semicond., 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001.
|
-
Abstract
The vigorous development of silicon photonics makes a silicon-based light source essential for optoelectronics' integration. Bonding of Ⅲ-Ⅴ/Si hybrid laser has developed rapidly in the last ten years. In the tireless efforts of researchers, we are privileged to see these bonding methods, such as direct bonding, medium adhesive bonding and low temperature eutectic bonding. They have been developed and applied to the research and fabrication of Ⅲ-Ⅴ/Si hybrid lasers. Some research groups have made remarkable progress. Tanabe Katsuaki of Tokyo University successfully implemented a silicon-based InAs/GaAs quantum dot laser with direct bonding method in 2012. They have bonded the InAs/GaAs quantum dot laser to the silicon substrate and the silicon ridge waveguide, respectively. The threshold current of the device is as low as 200 A/cm2. Stevan Stanković and Sui Shaoshuai successfully produced a variety of hybrid Ⅲ-Ⅴ/Si laser with the method of BCB bonding, respectively. BCB has high light transmittance and it can provide high bonding strength. Researchers of Tokyo University and Peking University have realized Ⅲ-Ⅴ/Si hybrid lasers with metal bonding method. We describe the progress in the fabrication of Ⅲ-Ⅴ/Si hybrid lasers with bonding methods by various research groups in recent years. The advantages and disadvantages of these methods are presented. We also introduce the progress of the growth of III-V epitaxial layer on silicon substrate, which is also a promising method to realize silicon-based light source. I hope that readers can have a general understanding of this field from this article and we can attract more researchers to focus on the study in this field. -
References
[1] Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203 doi: 10.1364/OE.14.009203[2] Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167[3] Liang Di, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3):1782 doi: 10.3390/ma3031782[4] Chen Hongda. Microelectronic and optoelectronic integrated technology. Beijing: Publishing House of Electronics Industry, 2008[5] Zhao Hongquan. Research of Si and InP bonding and the development of Si based InGaAsP laser. Doctoral Dissertation, Institute of Semiconductors, Chinese Academy of Sciences, 2006[6] Wang Xiaoqing, Yu Yude, Ning Jin. Researching the silicon direct wafer bonding with interfacial SiO2 layer. Journal of Semiconductors, 2016, 37(5): 056001 doi: 10.1088/1674-4926/37/5/056001[7] Lao Chunfang, Cao Yanfeng, Wu Huizhen, et al. Fabrication of InAsP/InGaAsP quantum-well 1.3 μm VCSELs by direct wafer-bonding. Journal of Semiconductors, 2008, 11: 2286 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=08042602&journal_id=bdtxbcn[8] Taylor G W, Evaldsson P A. Temperature dependent operation of the vertical cavity surface emitting laser. IEEE J Quantum Electron, 1994, 30(10): 2262 doi: 10.1109/3.328601[9] Esser R H, Hobart K D, Kub F J. Directional diffusion and void formation at a Si (001) bonded wafer interface. J Appl Phys, 2002, 92(4): 1945 doi: 10.1063/1.1491590[10] Tong Q Y, Goesele U. Semiconductor wafer bonding: science and technology. John Wiley, 1999[11] Wada H, Kamijoh T. 1.3 μm InP-InGaAsP lasers fabricated on Si substrates by wafer bonding. IEEE J Sel Topics Quantum Electron, 1997, 3(3): 937 doi: 10.1109/2944.640647[12] Tanabe K, Watanabe K, Arakawa Y. 1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces. Optics Express, 2012, 20(26): B315 doi: 10.1364/OE.20.00B315[13] Tanabe K, Watanabe K, Arakawa Y. Ⅲ-Ⅴ/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2: 349[14] Eaton W P, Risbud S H, Smith R L. Silicon wafer-to-wafer bonding at T < 200℃ with polymethylmethacrylate. Appl Phys Lett, 1994, 65(4): 439 doi: 10.1063/1.112326[15] Quenzer H J, Benecke W. Low-temperature silicon wafer bonding. Sensors and Actuators A, 1992, 32(1): 340 https://www.researchgate.net/publication/245079598_Low-temperature_silicon_wafer_bonding[16] Zhao Huan. The growth of 1.3-1.55 μm GaInNAs(Sb)/GaAs quantum well and fabrication of laser. Doctoral Dissertation. Institute of Semiconductors, Chinese Academy of Sciences, 2006[17] Roelkens G, Van Campenhout J, Brouckaert J, et al. Ⅲ-Ⅴ/Si photonics by die-to-wafer bonding. Materials Today, 2007, 10(7): 36[18] Stanković S, Jones R, Sysak M N, et al. 1310-nm hybrid Ⅲ-Ⅴ/Si Fabry-Pérot laser based on adhesive bonding. IEEE Photon Technol Lett, 2011, 23(23): 1781 doi: 10.1109/LPT.2011.2169397[19] Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Dielectric assisted bonding of Ⅲ-Ⅴ/Si hybrid metal lasers. Laser & Optoelectronics Progress, 2014, 51(11): 88[20] Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Metal limited medium assisted bonding Ⅲ-Ⅴ/Silicon base hybrid integrated laser for optical interconnection. Laser Optoelectron Progress, 2014, 51(11): 111401[21] Sui S S, Tang M Y, Yang Y D, et al. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon Res, 2015, 3(6): 289 doi: 10.1364/PRJ.3.000289[22] Sui S S, Tang M Y, Huang Y Z, et al. Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array. Electron Lett, 2015, 51(6): 506 doi: 10.1049/el.2014.4442[23] Sui S S, Tang M Y, Du Y, et al. A twelve-wavelength hybrid microdisk laser array coupled to a SOI bus waveguide. Asia Communications and Photonics Conference, 2014: AW4B.2[24] Sui S S, Tang M Y, Yang Y D, et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 2015, 51(4): 1 https://www.researchgate.net/publication/273395374_Sixteen-Wavelength_Hybrid_AlGaInAsSi_Microdisk_Laser_Array[25] Tanabe K, Guimard D, Bordel D, et al. Fabrication of electrically pumped InAs/GaAs quantum dot lasers on Si substrates by Aumediated wafer bonding. Physica Status Solidi C, 2011, 8(2): 319 doi: 10.1002/pssc.v8.2[26] Tanabe K, Guimard D, Bordel D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Optics Express, 2010, 18(10): 10604 doi: 10.1364/OE.18.010604[27] Ting C, Tao H, Pan J Q, et al. Electrically pumped room-temperature pulsed InGaAsP-Si hybrid lasers based on metal bonding. Chinese Physics Letters, 2009, 26(6): 064211 doi: 10.1088/0256-307X/26/6/064211[28] Hong T, Ran G Z, Chen T, et al. A selective-area metal bonding InGaAsP-Si laser. IEEE Photon Technol Lett, 2010, 22(15): 1141 doi: 10.1109/LPT.2010.2050683[29] Hong T, Li Y P, Chen W X, et al. Bonding InGaAsP/ITO/Si hybrid laser with ITO as cathode and light-coupling material. IEEE Photon Technol Lett, 2012, 24(8): 712 doi: 10.1109/LPT.2012.2187328[30] Yuan Lei, Tao Li, Yu Haoyong, et al. Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method. IEEE Photonics Technology Letters, 2013, 25(12): 1180 doi: 10.1109/LPT.2013.2262265[31] Yuan Lijun, Tao Li, Chen Weixi, et al. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photonics Technology Letters, 2015, 27(4): 352 doi: 10.1109/LPT.2014.2372892[32] Huang Xinnan, Gao Yonghao, Xu Xingsheng. Bonding III-V material to SOI with transparent and conductive ZnO film at low temperature. Optics Express, 2014, 22(12): 14285 doi: 10.1364/OE.22.014285 -
Proportional views