Citation: |
Najdia Benaziez, Abdelhamid Ounissi, Safia Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. Journal of Semiconductors, 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004
****
N Benaziez, A Ounissi, S Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. J. Semicond., 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004.
|
Enhancement of solar cells parameters by periodic nanocylinders
DOI: 10.1088/1674-4926/37/6/064004
More Information
-
Abstract
Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale. We report theoretical and simulation studies of a-Si thin-film solar cells with silver nanocylinders on the surface. We found that surface plasmons increased the cells' spectral response over almost the entire studied solar spectrum. In the ultraviolet range and at wavelengths close to the Si band gap we observed a significant enhancement of the absorption for both thin-film and wafer-based structures. We also performed optimization studies of particle size, inter-particle distance, and dielectric environment, for obtaining maximal absorption within the substrate. A blue-shift of the resonance wavelength with increasing inter-particle distance was observed in the visible range. Cell performance improved at optimal spacing, which strongly depended on the nanoparticle size. Increasing the nanocylinder size was accompanied by the widening of the plasmon resonance band and a red-shift of the plasmon resonance peaks. A weak red-shift and plasmon peak enhancement were observed in the reflectance curve with increasing refractive index of the dielectric spacer. -
References
[1] Kacha K, Djeffal F, Ferhati H, et al. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. Journal of Semiconductors, 2015, 36(6):064004[2] Qu Xiaosheng, Bao Hongyin, Nikjalal H S, et al. An InGaAs graded buffer layer in solar cells. Journal of Semiconductors, 2014, 35(1):014011[3] Gorji N E. Deposition and doping of CdS/CdTe thin film solar cells. Journal of Semiconductors, 2015, 36(5):054001[4] Green M A. Third generation photovoltaics. Berlin:Springer, 2003[5] Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express, 2009, 17(12):10195[6] Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16:21793[7] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93:191113[8] Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101:093105[9] Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys, 2009, 105:114310[10] Grady N K, Halas N J, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett, 2004, 399:167[11] Lahmani M, Dupas C, Houdy P. Nouvelle Édition. Berlin, 2006[12] Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photonics Rev, 2008, 2(3):136[13] Bruna M, Borini S. Optical constants of graphene layers in the visible range. Appl Phys Lett, 2009, 94(3):031901[14] Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express, 2010, 18(14):14395[15] Yamamoto M. Surface plasmon resonance (SPR) theory:tutorial. Rev Polarogr (Jpn), 2002, 48(3):209[16] Maharana P K, Jha R, Palei S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensor Actuat B Chem, 2014, 190:494[17] Palik E D. Handbook of optical constants of solids. London:Academic Press Inc, 1985[18] Silva A O, Costa J C W A. Retrieving the effective permittivity of an optical metamaterial structured with metallic cylindrical nanorods-an analytical approach based on the calculation of the depolarization field. J Microwaves Optoelectron Electromagn Appl, 2014, 13(SI1):10[19] Peiponen K E, Saarinen J J, Asakura T. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles. Opt Rev, 2001, 8(1):9[20] Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chem Rev, 2007, 107:4797[21] Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express, 2008, 16(20):15439[22] Yaghjian A D. Electric dyadic Green's functions in the source region. Proc IEEE, 1980, 68(2):248[23] Malitson I H. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am, 1965, 55:1205[24] Kanso M. PhD Thesis. École Polytechnique de l'Université de Nantes, 2008[25] Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6:4370[26] Hagglund C, Zach M, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett, 2008, 92:013113[27] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett, 2008, 93:121904[28] Lim S H, Mar W, Matheu P, et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys, 2007, 101(10):104309[29] Beck F J, Verhagen E, Mokkapati S, et al. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express, 2011, 19(2):A146[30] Matheu P, Lim S H, Derkacs D, et al. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett, 2008, 93(11):113108[31] ShuG W, Liao W C, Hsu C L, et al. Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles. Adv Sci Lett, 2010, 3(4):368[32] Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16(26):21793[33] Singh Y P. Enhancement in optical absorption of plasmonic solar cells. Open Renew Energ J, 2013, 6(1):21793[34] Rockstuhl C R, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. J Appl Phys, 2008, 104:1231021 -
Proportional views