Citation: |
Qing Wang, Yang Liu, Yongjian Sun, Yuzhen Tong, Guoyi Zhang. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process[J]. Journal of Semiconductors, 2016, 37(8): 083001. doi: 10.1088/1674-4926/37/8/083001
****
Q Wang, Y Liu, Y J Sun, Y Z Tong, G Y Zhang. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process[J]. J. Semicond., 2016, 37(8): 083001. doi: 10.1088/1674-4926/37/8/083001.
|
Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process
DOI: 10.1088/1674-4926/37/8/083001
More Information
-
Abstract
A new layer transfer technique which comprised double bonding and a step annealing process was utilized to transfer the GaN epilayer from a sapphire substrate to a Mo substrate. Combined with the application of the thermal-stable bonding medium, the resulting two-inch-diameter GaN template showed extremely good stability under high temperature and low stress state. Moreover, no cracks and winkles were observed. The transferred GaN template was suitable for homogeneous epitaxial, thus could be used for the direct fabrication of vertical LED chips as well as power electron devices. It has been confirmed that the double bonding and step annealing technique together with the thermal-stable bonding layer could significantly improve the bonding strength and stress relief, finally enhancing the thermal stability of the transferred GaN template. -
References
[1] Jia H, Guo L, Wang W, et al. Recent progress in GaN-based light-emitting diodes. Adv Mater, 2009, 21(45): 4641 doi: 10.1002/adma.v21:45[2] Xing H L, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Device Lett, 2004, 25(4): 161 doi: 10.1109/LED.2004.824845[3] Liu L, Edgar J H. Substrates for gallium nitride epitaxy. Materials Science & Engineering R, 2002, 37(3): 61 http://cn.bing.com/academic/profile?id=1974072513&encoded=0&v=paper_preview&mkt=zh-cn[4] Cao Junsong, Lü Xin, Zhao Lubing, et al. Influence of initial growth conditions and Mg-surfactant on the quality of GaN film grown by MOVPE. Journal of Semiconductors, 2015, 36(2): 023005 doi: 10.1088/1674-4926/36/2/023005[5] Kong Jing, Feng Meixin, Cai Jin, et al. GaN grown on nano-patterned sapphire substrates. Journal of Semiconductors, 2015, 36(4): 043003 doi: 10.1088/1674-4926/36/4/043003[6] Zhao Danmei, Zhao Degang, Jiang Desheng, et al. Impact of GaN transition layers in the growth of GaN epitaxial layer on silicon. Journal of Semiconductors, 2015, 36(6): 063003 doi: 10.1088/1674-4926/36/6/063003[7] Mao Qinghua, Liu Junlin, Wu Xiaoming, et al. Influence of growth rate on the carbon contamination and luminescence of GaN grown on silicon. Journal of Semiconductors, 2015, 36(9): 093003 doi: 10.1088/1674-4926/36/9/093003[8] Okamoto K, Inoue S, Matsuki N, et al. Epitaxial growth of GaN films grown on single crystal Fe substrates. Appl Phys Lett, 2008, 93(25): 251906 doi: 10.1063/1.3056117[9] Freitas J A, Rowland L B, Kim J, et al. Properties of epitaxial GaN on refractory metal substrates. Appl Phys Lett, 2007, 90(9): 091910 doi: 10.1063/1.2709512[10] Okamoto K, Inoue S, Nakano T, et al. Epitaxial growth of GaN on single-crystal Mo substrates using HfN buffer layers. J Cryst Growth, 2009, 311(5): 1311 doi: 10.1016/j.jcrysgro.2008.11.097[11] Arokiaraj J, Leong C K, Lixian V, et al. Bonding of GaN structures with Si (100) substrates using sequentially deposited NiAu metal layers. Appl Phys Lett, 2008, 92(12): 124105 doi: 10.1063/1.2903149[12] Gautier S, Moudakir T, Patriarche G, et al. Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire. J Cryst Growth, 2013, 370(5): 63 http://cn.bing.com/academic/profile?id=2141194668&encoded=0&v=paper_preview&mkt=zh-cn[13] Floyd P D, Chua C L, Treat D W, et al. Wafer fusion of infrared laser diodes to GaN light-emitting heterostructures. IEEE Photon Tech Lett, 1998, 10(11): 1539 doi: 10.1109/68.726742[14] Arokiaraj J, Soh C B, Wang X C, et al. Integration of GaN thin films to SiO2-Si (100) substrates by laser lift-off and wafer fusion method. Superlattices Microstruct, 2006, 40(4): 219 http://www.doc88.com/p-7824453817978.html[15] Chung J W, Lee J K, Piner E L, et al. Seamless on-wafer integration of Si (100) MOSFETs and GaN HEMTs. IEEE Electron Device Lett, 2009, 30(10): 1015 doi: 10.1109/LED.2009.2027914[16] Chung J W, Piner E L, Palacios T. N-face GaN/AlGaN HEMTs fabricated through layer transfer technology. IEEE Electron Device Lett, 2009, 30(2): 113 doi: 10.1109/LED.2008.2010415[17] Blasing J, Reiher A, Dadgar A, et al. The origin of stress reduction by low-temperature AlN interlayers. Appl Phys Lett, 2002, 81(15): 2722 doi: 10.1063/1.1512331[18] Zhang Xiaoying, Ruan Yujiao, Chen Songyan, et al. GaN/metal/Si heterostructure fabricated by metal bonding and laser lift-off. Journal of Semiconductors, 2009, 30(12): 123001 doi: 10.1088/1674-4926/30/12/123001[19] Zhao D G, Xu S J, Xie M H, et al. Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl Phys Lett, 2003, 83(4): 677 doi: 10.1063/1.1592306 -
Proportional views