Citation: |
Ran Jiang, Xianghao Du, Zuyin Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. Journal of Semiconductors, 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006
****
R Jiang, X H Du, Z Y Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. J. Semicond., 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006.
|
Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory
DOI: 10.1088/1674-4926/37/8/084006
More Information
-
Abstract
It is investigated for the effect of a ferroelectric Si:HfO2 thin film on the resistive switching in a stacked Pt/Si:HfO2/highly-oxygen-deficient HfO2-x/Pt structure. Improved resistance performance was observed. It was concluded that the observed resistive switching behavior was related to the modulation of the width and height of a depletion barrier in the HfO2-x layer, which was caused by the Si:HfO2 ferroelectric polarization field effect. Reliable switching reproducibility and long data retention were observed in these memory cells, suggesting their great potential in non-volatile memories applications with full compatibility and simplicity.-
Keywords:
- ReRAM,
- ferroelectric,
- models
-
References
[1] Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater, 2009, (21): 2632 http://cn.bing.com/academic/profile?id=2074357625&encoded=0&v=paper_preview&mkt=zh-cn[2] Jiang R, Du X, Han Z, et al. Investigation of chemical distribution in the oxide bulk layer in Ti/HfO2/Pt memory devices using X-ray photoelectron spectroscopy. Appl Phys Lett, 2015, 106(17): 173509 doi: 10.1063/1.4919567[3] Kita K, Eika A, Nishimura T, et al. Resistive switching in NiO bilayer films with different crystallinity layers. Key Engineering Materials, 2011, 470: 188 doi: 10.4028/www.scientific.net/KEM.470[4] Chand U, Huang C Y, Jieng J H, et al. Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl Phys Lett, 2015, 106(15): 153502 doi: 10.1063/1.4918679[5] Sowinska M, Bertaud T, Walczyk D, et al. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells. J Appl Phys, 2014, 115(20): 204509 doi: 10.1063/1.4879678[6] Tan T, Guo T, Chen X et al. Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices. Appl Surf Sci, 2014, 317: 982 doi: 10.1016/j.apsusc.2014.09.027[7] Zhou L W, Shao X L, Li X Y et al. Interface engineering for improving reliability of resistance switching in Cu/HfO2/TiO2/Pt structure. Appl Phys Lett, 2015, 107: 072901 doi: 10.1063/1.4928710[8] Jiang R, Xie E, Chen Z, et al. Electrical property of HfOxNy-HfO2-HfOxNy sandwich-stack films. Appl Surf Sci, 2006, 253(5): 2421 doi: 10.1016/j.apsusc.2006.04.056[9] Jiang R, Li Z, Zhang Y. Inflexion behaviour of VFB while tuning the oxide thickness in HfO2-based capacitors. J Phys D, 2010, 43(16): 165302 doi: 10.1088/0022-3727/43/16/165302[10] Jiang R, Li Z. Interfacial growth at the HfO2/Si interface during annealing in oxygen ambient. Semicond Sci Tech, 2009, 24(6): 065006 doi: 10.1088/0268-1242/24/6/065006[11] Jiang R, Xie E, Wang Z. Effect of inner oxygen on the interfacial layer formation for HfO2 gate dielectric. J Mater Sci, 2007, 42(17): 7343 doi: 10.1007/s10853-007-1584-z[12] Jiang R, Xie E, Wang Z. Interfacial chemical structure of HfO2/Si film fabricated by sputtering. Appl Phys Lett, 2006, 89(14): 142907 doi: 10.1063/1.2358841[13] Jiang R, Li Z. Behavior of stress induced leakage current in thin HfO_xN_y films. Appl Phys Lett, 2008, 92(1): 2919[14] Sadaf S M, Bourim E M, Liu X, et al. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure. Appl Phys Lett, 2012, 100(11): 113505 doi: 10.1063/1.3694016[15] Li Q, Wang J, Liu Z, et al. Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci, 2015, 51(2): 1153 http://cn.bing.com/academic/profile?id=2133801301&encoded=0&v=paper_preview&mkt=zh-cn[16] Böcke T, Müler J, Brähaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99(10): 102903 doi: 10.1063/1.3634052[17] Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22(11): 2412 doi: 10.1002/adfm.v22.11[18] Müler J, Böcke T S, Schrör U, et al. Nanosecond polarization switching and long retention in a novel MFIS-FET based on Ferroelectric. IEEE Electron Device Lett, 2012, 33(2): 185 doi: 10.1109/LED.2011.2177435[19] Sang X, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106(16): 162905 doi: 10.1063/1.4919135[20] Lomenzo P D, Takmeel Q, Zhou C, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys, 2015, 117(13): 134105 doi: 10.1063/1.4916715[21] Schroeder U, Mueller S, Mueller J, et al. Hafnium oxide based CMOS compatible ferroelectric materials. ECS Journal of Solid State Science and Technology, 2013, 2(4): N69 doi: 10.1149/2.010304jss[22] Müler J, Schröer U, Böcke T, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys, 2011, 110(11): 114113 doi: 10.1063/1.3667205[23] Schroeder U, Yurchuk E, Müler J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014 53(8S1): 08LE2 http://cn.bing.com/academic/profile?id=1990324180&encoded=0&v=paper_preview&mkt=zh-cn[24] Lomenzo P D, Takmeel Q, Zhou C, et al. The effects of layering in ferroelectric Si-doped HfO2 thin films. Appl Phys Lett, 2014, 105(7): 072906 doi: 10.1063/1.4893738[25] Yang M K, Park J W, Ko T K, et al. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Appl Phys Lett, 2009, 95(4): 2105 https://www.researchgate.net/publication/234887562_Bipolar_Resistive_Switching_Behavior_in_TiMnO2Pt_Structure_for_Nonvolatile_Memory_Devices[26] Cho D Y, Lee J M, Oh S J, et al. Influence of oxygen vacancies on the electronic structure of HfO2 films. Phys Rev B, 2007, 76(16): 165411 doi: 10.1103/PhysRevB.76.165411[27] Robertson J, Sharia O, Demkov A. Fermi level pinning by defects in HfO2-metal gate stacks. Appl Phys Lett, 2007, 91(13): 2912 https://www.researchgate.net/publication/234974820_Fermi_Level_Pinning_by_Defects_in_HfO2-Metal_Gate_Stacks[28] Sharath S, Kurian J, Komissinskiy P, et al. Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories. Appl Phys Lett, 2014, 105(7): 073505 doi: 10.1063/1.4893605[29] Strachan J P, Yang J J, Montoro L, et al. Characterization of electroforming-free titanium dioxide memristors. Beilstein Journal of Nanotechnology, 2013, 4(1): 467 http://cn.bing.com/academic/profile?id=2138116249&encoded=0&v=paper_preview&mkt=zh-cn[30] Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 276(5310): 238 doi: 10.1126/science.276.5310.238[31] Sze S, Kwok K N. Physics of semiconductor devices. 3rd ed. Wiley Online Library, 2007[32] Park J, Kwon D H, Park H, et al. Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett, 2014, 105(18): 183103 doi: 10.1063/1.4901053[33] Hara T. Electronic structures near surfaces of perovskite type oxides. Mater Chem Phys, 2005, 91(2): 243 http://cn.bing.com/academic/profile?id=2043986005&encoded=0&v=paper_preview&mkt=zh-cn[34] Shanthi N, Sarma D. Electronic structure of electron doped SrTiO 3: SrTiO3-δ and Sr1-xLa xTiO3. Phys Rev B, 1998, 57(4): 2153 doi: 10.1103/PhysRevB.57.2153[35] Jiang Ran, Meng Lingguo, Zhang Xijian, et al. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. Journal of Semiconductors, 2012, 33(9): 093004 doi: 10.1088/1674-4926/33/9/093004[36] Zhang Yan, Jiang Ran. Effect of annealing on characteristics of a HfOxNy-HfO2-HfOxNy sandwich stack compared with HfO2 film. Journal of Semiconductors, 2009, 30(8): 082004 doi: 10.1088/1674-4926/30/8/082004[37] Jiang Ran, Zhang Yan. Observation of ferromagnetism in highly oxygen-deficient HfO2 films. Journal of Semiconductors, 2009, 30(10): 102002 doi: 10.1088/1674-4926/30/10/102002 -
Proportional views