Citation: |
Xiongfeng Fang, Lin Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. Journal of Semiconductors, 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004
****
X F Fang, L Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. J. Semicond., 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004.
|
Thermal effect analysis of silicon microring optical switch for on-chip interconnect
DOI: 10.1088/1674-4926/38/10/104004
More Information
-
Abstract
The silicon microring resonator plays an important role in large-scale, high-integrability modern switching matrixes and optical networks, as silicon photonics enables ring resonators of an unprecedented compact size. But as the nature of resonators is their sensitivity to temperature, their performances are vulnerable to being affected by thermal effect. In this paper, we analyze the dominant thermal effects to the application of silicon microring optical switch. On the one hand we theoretically analyze and experimentally measure the thermal crosstalk among adjacent microring optical switches with different distances, and give possible solutions to minimize the affect of thermal crosstalk. On the other hand we analyze and measure the thermooptic dynamic response of microring switch; the experiment shows for the thermal-tuning that the rising edge is around 2μs, and the falling edge is around 35μs. We give the explanation of the asymmetric rise-time and fall-time. -
References
[1] Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57(9):1246 doi: 10.1109/TC.2008.78[2] Kumar S, Jantsch A, Soininen J P, et al. A network on chip architecture and design methodology. Proceedings IEEE Computer Society Annual Symposium on VLSI, 2002:117 http://ieeexplore.ieee.org/document/1016885/[3] Poon A W, Luo X, Xu F, et al. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc IEEE, 2009, 97(7):1216 doi: 10.1109/JPROC.2009.2014884[4] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12(6):1678 doi: 10.1109/JSTQE.2006.883151[5] Pavesi L, Lockwood D J. Silicon photonics. Springer Science & Business Media, 2004[6] Carslaw H S, Jaeger J C. Conduction of heat in solids. 2nd ed. New York: Oxford, 1959[7] Supa'at A S M. Design and fabrication of a polymer based directional coupler thermooptic switch. PhD Thesis, Universiti Teknologi Malaysia, 2004[8] Jaluria Y. Computational heat transfer. CRC Press, 2002[9] Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604[10] Moller B A, Jensen L, Laurent-Lund C, et al. Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion. IEEE Photonics Technol Lett, 1993, 5(12):1415 doi: 10.1109/68.262559[11] Nishihara H, Haruna M, Suhara T. Optical integrated circuits. New York:McGraw-Hill Professional, 1989:7 https://core.ac.uk/download/pdf/11783081.pdf[12] Ibrahim M H, Kassim N M, Bakar A B U. Thermal analysis in optical waveguides. J Teknologi, 2007, 46:93 https://core.ac.uk/download/pdf/11783081.pdf[13] Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604[14] Klunder D J W. Thermo optical tuning of Mach-Zehnder inteferometers. Traineeship Report at IBM Zurich Research Laboratory, 1997:20 http://www.en.cnki.com.cn/Article_en/CJFDTotal-CGJM201602003.htm[15] Cocorullo G, Della Corte F G, Rendina I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl Phys Lett, 1999, 74(22):3338 doi: 10.1063/1.123337[16] Kittel C, Kroemer H. Thermal physics. 2nd ed. Freeman, 1998[17] Özışık M N. Heat transfer: a basic approach. McGraw-Hill College, 1985 -
Proportional views