Citation: |
Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride[J]. Journal of Semiconductors, 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003
****
H L Wang, Y J Zhao, Y Xie, X H Ma, X W Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride[J]. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003.
|
Recent progress in synthesis of two-dimensional hexagonal boron nitride
DOI: 10.1088/1674-4926/38/3/031003
More Information
-
Abstract
Two-dimensional (2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties, as well as their potential applications. 2D hexagonal boron nitride (2D h-BN), an insulator with excellent thermal stability, chemical inertness, and unique electronic and optical properties, and a band gap of 5.97 eV, is considered to be an ideal candidate for integration with other 2D materials. Nevertheless, the controllable growth of high-quality 2D h-BN is still a great challenge. A comprehensive overview of the progress that has been made in the synthesis of 2D h-BN is presented, highlighting the advantages and disadvantages of various synthesis approaches. In addition, the electronic, optical, thermal, and mechanical properties, heterostructures, and related applications of 2D h-BN are discussed. -
References
[1] Ferrari A C, Bonaccorso F, Fal'ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11):4598 doi: 10.1039/C4NR01600A[2] Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3):183 doi: 10.1038/nmat1849[3] Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10):9451 doi: 10.1021/acsnano.5b05040[4] Bhimanapati G R, Lin Z, Meunier V. Recent advances in twodimensional materials beyond graphene. ACS Nano, 2015, 9(12):11509 doi: 10.1021/acsnano.5b05556[5] Yin J, Li J, Hang Y, et al. Boron nitride nanostructures:fabrication, functionalization and applications. Small, 2016, 12(22):2942 doi: 10.1002/smll.201600053[6] Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6):2979 doi: 10.1021/nn1006495[7] Pakdel A, Bando Y, Golberg D. Nano boron nitride flatland. Chem Soc Rev, 2014, 43(3):934 doi: 10.1039/C3CS60260E[8] Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet lightemitting hexagonal boron nitride synthesized at atmospheric pressure. Science, 2007, 317(5840):932 doi: 10.1126/science.1144216[9] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett, 2012, 12(2):714 doi: 10.1021/nl203635v[10] Giovannetti G, Khomyakov P, Brocks G, et al. Substrate induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations. Phys Rev B, 2007, 76(7):073103 doi: 10.1103/PhysRevB.76.073103[11] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10):722 doi: 10.1038/nnano.2010.172[12] Mayorov A S, Gorbachev R V, Morozov S V, et al, Micrometerscale ballistic transport in encapsulated graphene at room temperature. Nano Lett, 2011, 11(6):2396 doi: 10.1021/nl200758b[13] Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of singledomain graphene on hexagonal boron nitride. Nat Mater, 2013, 12(9):792 doi: 10.1038/nmat3695[14] Gibb A L, Alem N, Chen J H, et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor depositiongrown hexagonal boron nitride. J Am Chem Soc, 2013, 135(18):6758 doi: 10.1021/ja400637n[15] Cretu O, Lin Y C, Suenaga K. Evidence for active atomic defects in monolayer hexagonal boron nitride:a new mechanism of plasticity in two-dimensional materials. Nano Lett, 2014, 14(2):1064 doi: 10.1021/nl404735w[16] Bresnehan M S, Hollander M J, Wetherington M, et al. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene:toward wafer-scale, high-performance devices. ACS Nano, 2012, 6(6):5234 doi: 10.1021/nn300996t[17] Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071):947 doi: 10.1126/science.1218461[18] Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater, 2016, 28(37):8302 doi: 10.1002/adma.v28.37[19] Meng J H, Liu X, Zhang X W, et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 2016, 28:44 doi: 10.1016/j.nanoen.2016.08.028[20] Cui X, Lee G H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotech, 2015, 10(6):534 doi: 10.1038/nnano.2015.70[21] Li L, Ye G J, Tran V, et al. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10(7):608 doi: 10.1038/nnano.2015.91[22] Jeong H, Bang S, Oh H M, et al. Semiconductor-insulator- semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure. ACS Nano, 2015, 9(10):10032 doi: 10.1021/acsnano.5b04233[23] Li D, Wang X, Zhang Q, et al. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv Funct Mater, 2015, 25(47):7360 doi: 10.1002/adfm.v25.47[24] Britnell L, Gorbachev R V, Jalil R, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett, 2012, 12(3):1707 doi: 10.1021/nl3002205[25] Tang S, Wang H, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat Commun, 2015, 6:6499 doi: 10.1038/ncomms7499[26] Levendorf M P, Kim C J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature, 2012, 488(7413):627 doi: 10.1038/nature11408[27] Liu Z, Ma L L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol, 2013, 8(2):119 doi: 10.1038/nnano.2012.256[28] Liu Z, Song L, Zhao S Z, et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett, 2011, 11(5):2032 doi: 10.1021/nl200464j[29] Wang M, Jang S K, Jang W J, et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater, 2013, 25(19):2746 doi: 10.1002/adma.v25.19[30] Meng J H, Zhang X W, Wang H L, et al. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale, 2015, 7(38):16046 doi: 10.1039/C5NR04490A[31] Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride:optical and Raman signatures. Small, 2011, 7:465 doi: 10.1002/smll.201001628[32] Wang H L, Zhang X W, Liu H, et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition. Adv Mater, 2015, 27(48):8109 doi: 10.1002/adma.201504042[33] Jo I, Pettes M T, Kim J, et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett, 2013, 13(2):550 doi: 10.1021/nl304060g[34] Lindsay L, Broido D A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys Rev B, 2012, 85(15):035436 https://www.researchgate.net/publication/235494934_Enhanced_thermal_conductivity_and_isotope_effect_in_single-layer_hexagonal_boron_nitride[35] Alam M T, Bresnehan M S, Robinson J A, et al. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films. Appl Phys Lett, 2014, 104(1):013113 doi: 10.1063/1.4861468[36] Song W L, Wang P, Cao L, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed, 2012, 51(26):6498 doi: 10.1002/anie.201201689[37] Taha-Tijerina J, Narayanan T N, Gao G H, et al. Electrically insulating thermal nano-oils using 2D fillers. ACS Nano, 2012, 6(2):1214 doi: 10.1021/nn203862p[38] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887):385 doi: 10.1126/science.1157996[39] Bosak A, Serrano J, Krisch M, et al. Elasticity of hexagonal boron nitride:inelastic X-ray scattering measurements. Phys Rev B, 2006, 73(4):041402(R)[40] Wang Y, Shi Z, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem, 2011, 21(30):11371 doi: 10.1039/c1jm10342c[41] Jin X, Fu N, Ding H, et al. Effects of h-BN on the thermal and mechanical properties of PBT/PC/ABS blend based composites. RSC Adv, 2015, 5(72):58171 doi: 10.1039/C5RA09746K[42] Liu Z, Gong Y, Zhou W, et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun, 2013, 4:2541 https://www.researchgate.net/publication/261796059_Ultrathin_high-temperature_oxidation-resistant_coatings_of_hexagonal_boron_nitride[43] Li X, Yin J, Zhou J, et al. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology, 2014, 25(10):105701 doi: 10.1088/0957-4484/25/10/105701[44] Qi J, Qian X, Qi L, et al. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett, 2012, 12(3):1224 doi: 10.1021/nl2035749[45] Duerloo K A N, Reed E J. Flexural electromechanical coupling:a nanoscale emergent property of boron nitride bilayers. Nano Lett, 2013, 13(4):1681 doi: 10.1021/nl4001635[46] Gao M, Lyalin A, Taketsugu T. Catalytic activity of Au and Au2 on the h-BN surface:adsorption and activation of O2. J Phys Chem C, 2012, 116(16):9054 doi: 10.1021/jp300684v[47] Lin Y, Bunker C E, Fernando K A S, et al. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl Mater Interfaces, 2012, 4(2):1110 doi: 10.1021/am201747d[48] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666 doi: 10.1126/science.1102896[49] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Nat Acad Sci USA, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102[50] Pacile D, Meyer J C, Girit C O, et al. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92(13):133107 doi: 10.1063/1.2903702[51] Pakdel A, Zhi C Y, Bando Y. Low-dimensional boron nitride nanomaterials. Mater Today, 2012, 15(6):256 doi: 10.1016/S1369-7021(12)70116-5[52] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113(5):3766 doi: 10.1021/cr300263a[53] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem, 2011, 21(32):11862 doi: 10.1039/c1jm11192b[54] Han W Q, Wu L, Zhu Y, et al. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl Phys Lett, 2008, 93(22):223103 doi: 10.1063/1.3041639[55] Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017):568 doi: 10.1126/science.1194975[56] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater, 2011, 23(24):3944 https://www.researchgate.net/profile/Andrew_Minett/publication/51528178_Large-Scale_Exfoliation_of_Inorganic_Layered_Compounds_in_Aqueous_Surfactant_Solutions/links/02e7e5193182d696ce000000.pdf[57] Zhi C Y, Bando Y, Tang C C, et al. Large-scale fabrication of few-atomic-layer boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater, 2009, 21(28):288[58] Warner J H, Rummeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano, 2010, 4(3):1299 doi: 10.1021/nn901648q[59] Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett, 2010, 1(1):277 doi: 10.1021/jz9002108[60] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater, 2013, 25(15):2200 doi: 10.1002/adma.201204031[61] Bao J, Jeppson K, Edwards M, et al. Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electron Mater Lett, 2016, 12(1):1 doi: 10.1007/s13391-015-5308-2[62] Paffett M T, Simonson R J, Papin P, et al. Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces. Surf Sci, 1990, 232(3):286 doi: 10.1016/0039-6028(90)90121-N[63] Nagashima A, Tejima N, Gamou Y, et al. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys Rev Lett, 1995, 75(21):3918 doi: 10.1103/PhysRevLett.75.3918[64] Corso M, Auwarter W, Muntwiler M, et al. Boron nitride nanomesh. Science, 2004, 303(5655):217 doi: 10.1126/science.1091979[65] Auwarter W, Kreutz T J, Greber T, et al. XPD and STM investigation of hexagonal boron nitride on Ni(111). Surf Sci, 1999, 429(1-3):229 doi: 10.1016/S0039-6028(99)00381-7[66] Shi Y, Hamsen C, Jia X, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett, 2010, 10(10):4134 doi: 10.1021/nl1023707[67] Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10(8):3209 doi: 10.1021/nl1022139[68] Kim K K, Hsu A, Jia X, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett, 2012, 12(1):161 doi: 10.1021/nl203249a[69] Kim G, Jang A R, Jeong H Y, et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett, 2013, 13(4):1834 doi: 10.1021/nl400559s[70] Kidambi P R, Blume R, Kling J, et al. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem Mater, 2014, 26(22):6380 doi: 10.1021/cm502603n[71] Pierson H O. Boron nitride composites by chemical vapor deposition. J Compos Mater, 1975, 9(3):228 doi: 10.1177/002199837500900302[72] Rozenberg A S, Sinenko Y A, Chukanov N V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix. J Mater Sci, 1993, 28(20):5528 doi: 10.1007/BF00367825[73] Middleman S. The role of gas-phase reactions in boron nitride growth by chemical vapor deposition. Mater Sci Eng A, 1993, 163(1):135 doi: 10.1016/0921-5093(93)90587-5[74] Chatterjee S, Luo Z, Acerce M, et al. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem Mater, 2011, 23(20):4414 doi: 10.1021/cm201955v[75] Adams A C. Characterization of films formed by pyrolysis of borazine. J Electrochem Soc, 1981, 128(6):1378 doi: 10.1149/1.2127639[76] Auwarter W, Suter H U, Sachdev H, et al. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3. Chem Mater, 2004, 16(2):343 doi: 10.1021/cm034805s[77] Muller F, Stowe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3. Chem Mater, 2005, 17(13):3464 doi: 10.1021/cm048629e[78] Constant G, Feurer R. Preparation and characterization of thin protective films in silica tubes by thermal decomposition of hexachloroborazine. J Less-Common Met, 1981, 82(1/2):113[79] Wolf G, Baumann J, Baitalow F, et al. Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochim Acta, 2000, 343(1/2):19 https://www.researchgate.net/publication/223433830_Calorimetric_Process_Monitoring_of_Thermal_Decomposition_of_B-N-H_Compounds[80] Kim K K, Hsu A, Jia X, et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano, 2012, 6(10):8583 doi: 10.1021/nn301675f[81] Han J, Lee J Y, Kwon H, et al. Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition. Nanotechnology, 2014, 25(14):145604 doi: 10.1088/0957-4484/25/14/145604[82] Tay R Y, Wang X, Tsang S H, et al. A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. J Mater Chem C, 2014, 2(9):1650 doi: 10.1039/c3tc32011a[83] Park J H, Park J C, Yun S J, et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano, 2014, 8(8):8520 doi: 10.1021/nn503140y[84] Orofeo C M, Suzuki S, Kageshima H, et al. Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt. Nano Res, 2013, 6(5):335 doi: 10.1007/s12274-013-0310-1[85] Koepke J C, Wood J D, Chen Y, et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane. Chem Mater, 2016, 28(12):4169 doi: 10.1021/acs.chemmater.6b00396[86] Wu Q, Park J H, Park S, et al. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains. Sci Rep, 2015, 5:16159 doi: 10.1038/srep16159[87] Gao Y, Ren W, Ma T, et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano, 2013, 7(6):5199 doi: 10.1021/nn4009356[88] Kim S M, Hsu A, Park M H, et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat Commun, 2015, 6:8662 doi: 10.1038/ncomms9662[89] Fu L, Sun Y, Wu N, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10(2):2063 doi: 10.1021/acsnano.5b06254[90] Lee Y H, Liu K K, Lu A Y, et al. Growth selectivity of hexagonalboron nitride layers on Ni with various crystal orientations. RSC Adv, 2012, 2(1):111 doi: 10.1039/C1RA00703C[91] Khan M H, Huang Z, Xiao F, et al. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Sci Rep, 2015, 5:7743 doi: 10.1038/srep07743[92] Stehle Y, Meyer Ⅲ H M, Unocic R R, et al. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology. Chem Mater, 2015, 27(23):8041 doi: 10.1021/acs.chemmater.5b03607[93] Liu Y, Bhowmick S, Yakobson B I. BN white graphene with "colorful" edges:the energies and morphology. Nano Lett, 2011, 11(8):3113 doi: 10.1021/nl2011142[94] Zhang Z, Liu Y, Yang Y, et al. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett, 2016, 16(2):1398 doi: 10.1021/acs.nanolett.5b04874[95] Liu L, Siegelb D A, Chen W, et al. Unusual role of epilayersubstrate interactions in determining orientational relations in van der Waals epitaxy. Proc Natl Acad Sci USA, 2014, 111(47):16670 doi: 10.1073/pnas.1405613111[96] Song X, Gao J, Nie Y, et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res, 2015, 8(10):3164 doi: 10.1007/s12274-015-0816-9[97] Tay R Y, Park H J, Ryu G H, et al. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8(4):2434 doi: 10.1039/C5NR08036C[98] Yin J, Liu X, Lu W, et al. Aligned growth of hexagonal boron nitride monolayer on germanium. Small, 2015, 11(40):5375 doi: 10.1002/smll.v11.40[99] Li J D, Li Y, Yin J, et al. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small, 2016, 12(27):3645 doi: 10.1002/smll.v12.27[100] Tay R Y, Griep M H, Mallick G, et al, Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett, 2014, 14(2):839 doi: 10.1021/nl404207f[101] Wang L, Wu B, Chen J, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv Mater, 2014, 26(10):1559 doi: 10.1002/adma.201304937[102] Lu G, Wu T, Yuan Q, et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat Commun, 2015, 6:6160 doi: 10.1038/ncomms7160[103] Caneva S, Weatherup R S, Bayer B C, et al. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett, 2015, 15(3):1867 doi: 10.1021/nl5046632[104] Yu J, Qin L, Hao Y, et al. Vertically aligned boron nitride nanosheets:chemical vapor synthesis, ultraviolet light emission and superhydrophobicity. ACS Nano, 2010, 4(1):414 doi: 10.1021/nn901204c[105] Qin L, Yu J, Li M, et al. Catalyst-free growth of mono- and fewatomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology, 2011, 22(21):215602 doi: 10.1088/0957-4484/22/21/215602[106] Tay R Y, Tsang S H, Loeblein M, et al. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl Phys Lett, 2015, 106(10):101901 doi: 10.1063/1.4914474[107] Jang A R, Hong S, Hyun C, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett, 2016, 16(5):3360 doi: 10.1021/acs.nanolett.6b01051[108] Suzuki S, Pallares R M, Hibino H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation. J Phys D, 2012, 45:385304 doi: 10.1088/0022-3727/45/38/385304[109] Suzuki S, Pallares R M, Orofeo C M, et al. Boron nitride growth on metal foil using solid sources. J Vac Sci Technol B, 2013, 31(4):041804 doi: 10.1116/1.4810965[110] Zhang C, Fu L, Zhao S, et al. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Adv Mater, 2014, 26(11):1776 doi: 10.1002/adma.201304301[111] Nakhaie S, Wofford J M, Schumann T, et al. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl Phys Lett, 2015, 106(21):213108 doi: 10.1063/1.4921921[112] Yang X, Guan Z, Zeng M, et al. Facile synthesis of large-area ultrathin hexagonal BN films via self-limiting growth at the molten B2O3 surface. Small, 2013, 9(8):1353 doi: 10.1002/smll.201203126[113] Wang H L, Zhang X W, Meng J H, et al. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small, 2015, 11(13):1542 doi: 10.1002/smll.v11.13[114] Sutter P, Lahiri J, Zahl P, et al. Scalable synthesis of uniform fewlayer hexagonal boron nitride dielectric films. Nano Lett, 2013, 13(1):276 doi: 10.1021/nl304080y -
Proportional views