Citation: |
Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations[J]. Journal of Semiconductors, 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001
****
A Nabi, Z Akhtar, T Iqbal, A Ali, A Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations[J]. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001.
|
The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations
DOI: 10.1088/1674-4926/38/7/073001
More Information
-
Abstract
In this article, density functional theory (DFT) based on generalized gradient approximation (GGA) and GGA+U, U is Hubbard term, is used to study the electronic properties of CdS doped with different dopants (Cr, Mn). The calculations are carried out for Mn-doped CdS, Cr-doped CdS, and co-doping of Mn/Cr in CdS simultaneously. It is found that hopping of electrons is possible with Cr:CdS and Mn:Cr:CdS while Mn:CdS does not allow the hopping of electrons. Moreover, double exchange interactions are observed in Cr:CdS and d-d super-exchange interactions are observed in Mn:CdS. Now the problem becomes interesting when one magnetic ion (Cr) supporting double exchange interactions and another ion (Mn) supporting d-d super-exchange interactions are doped simultaneously in the same system (CdS). The co-doped CdS is more stable even at high Curie temperature due to p-d double exchange interactions and d-d super exchange interactions. Furthermore, the Cr-3d and Mn-3d states present in-between the band gap are responsible for inner shell transitions and hence for optical properties. Therefore, the co-doped system is taken into account to enhance its applications in the field of spintronic and magneto-optical devices.-
Keywords:
- wurtzite,
- first principles,
- density functional theory
-
References
[1] Sadhu S, Patra A. Synthesis and spectroscopic study of high quality alloy CdxZn1-xS nanocrystals. J Chem Sci, 2008, 120(6): 557 doi: 10.1007/s12039-008-0085-1[2] Razykov T M, S Zh K, Yu A L, et al. Effect of the grain boundaries on the conductivity and current transport in Ⅱ-Ⅵ films. Sol Energy Mater Sol Cells, 2006, 90: 2255 doi: 10.1016/j.solmat.2006.02.025[3] Wei S H, Zhang S B. Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors. Phys Rev B, 2000, 62: 6944 doi: 10.1103/PhysRevB.62.6944[4] Segura A, Sans J A. Optical properties and electronic structure of rock-salt ZnO under pressure. Appl Phys Lett, 2003, 83: 278 doi: 10.1063/1.1591995[5] Gronin S V, Sorokin S V, Kazanov D R, et al. CdSe/ZnCdSe quantum dot hetrostructures for yellow spectral range grown on GaAs substrates by molecular beam epitaxy. Acta Phys Polonica A, 2014, 126(5): 1096 doi: 10.12693/APhysPolA.126.1096[6] Chen X, Hua X, Hu J, et al. Band structures of Ⅱ-Ⅵ semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: application to prediction of band offsets. Phys Rev B, 1996, 53(3) :1377 doi: 10.1103/PhysRevB.53.1377[7] Greenwood N N, Earnshaw A. Chemistry of the elements. 2nd ed. Butterworth-Heinemann, Oxford, 1997[8] Wang J, Isshiki M. Wide-bandgap Ⅱ-Ⅵ semiconductors: growth and properties. Springer Handbook of Electronic and Photonic Materials, 2007: 325[9] Ekuma E C, Franklin L, Zhao G L, et al. Local density approximation description of electronic properties of wurtzite cadmium sulfide (w-CdS). Can J Phys, 2011, 89: 319 doi: 10.1139/P11-023[10] Pal U, Gonzalez R S, Martinez G M, et al. Optical characterization of vacuum evaporated cadmium sulfide films. Thin Solid Films, 1997, 305(1): 345 http://www.ifuap.buap.mx/~upal/assets/33.pdf[11] Caglar M, Zor M, Ilican S, et al. Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22Zn0.78S thin films. Czech J Phys, 2006, 56(3): 277 doi: 10.1007/s10582-006-0088-4[12] Brusatin G, Guglielmi M, Innocenzi P, et al. Materials for photonic applications from sol-gel. J Electroceram, 2000, 4: 151 doi: 10.1023/A:1009981510609[13] El Amine Monir M, Baltache H, Khenata R, et al. Half-metallicity and optoelectronic properties of V-doped zincblende ZnS and CdS alloys. Int J Mod Phys B, 2016, 30(8): 1650034 doi: 10.1142/S021797921650034X[14] Zuo T, Sun Z, Zhao Y, et al. The big red shift of photoluminescence of Mn dopants in strained CdS: a case study of Mn-doped MnS-CdS heteronanostructures. J Am Chem Soc, 2010, 132(19): 6618 doi: 10.1021/ja100136a[15] Chen C C, Herhold A B, Johnson C S, et al. Size dependence of structural metastability in semiconductor nanocrystals. Science, 1997, 276(5311): 398 doi: 10.1126/science.276.5311.398[16] Hossain M A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Phys Chem Chem Phys, 2012, 14: 7367 doi: 10.1039/c2cp40551b[17] Ouachtari F, Rmili A, Elidrissi S E B, et al. Influence of bath temperature, deposition time and [S]/[Cd] ratio on the structure, surface morphology, chemical composition and optical properties of CdS thin films elaborated by chemical bath deposition. J Mod Phys, 2011, 2(9): 1073 doi: 10.4236/jmp.2011.29131[18] Ulrich F, Zachariasen W. On the crystal structure of alpha and beta CdS and wurtzite. Zeitschrift Fuer Kristallographie, 1925, 62(3/4): 260[19] Rooymans C J M. Structure of the high pressure phase of CdS, CdSe and InSb. Phys Lett, 1963, 4(3): 186 doi: 10.1016/0031-9163(63)90356-1[20] Stanely W W L, Rabii S. Relativistic electronic structure of the NaCl polymorph of CdS. Phys Rev B, 1976, 13: 1675 doi: 10.1103/PhysRevB.13.1675[21] Adachi S. Optical constants of crystalline and amorphous semiconductors. Springer, 1999: 487[22] Yeh C Y, Lu Z W, Froyen S, et al. Zinc-blende-wurtzite polytypism in semiconductors. Phys Rev B, 1992, 46: 10086 doi: 10.1103/PhysRevB.46.10086[23] Antolini F, Pentamali M, Luccio D T, et al. Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis. Mater Lett, 2005, 59: 3181 doi: 10.1016/j.matlet.2005.05.047[24] Wu C H, Bube R H. Thermoelectric and photothermoelectric effects in semiconductors: cadmium sulfide films. J Appl Phys, 1974, 45(2): 648 doi: 10.1063/1.1663298[25] Altosaar M, Ernits K, Krustok J, et al. Comparison of CdS films deposited from chemical baths containing different doping impurities. Thin Solid Films, 2005, 147: 480 http://staff.ttu.ee/~krustok/PDF-s/Comparison%20of%20CdS%20films%20deposited%20from%20chemical%20baths%20containing.pdf[26] Sankar N, Sanjeeviraja C, Ramachandran K. Growth and characterization of CdS and doped CdS single crystals. J Cryst Growth, 2002, 243: 117 doi: 10.1016/S0022-0248(02)01488-4[27] Atay F, Kose S, Bilgin V, et al. CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration. Mater Lett, 2003, 57: 3461 doi: 10.1016/S0167-577X(03)00100-9[28] Badera N, Godbole B, Srivastava S B, et al. Quenching of photoconductivity in Fe doped CdS thin films prepared by spray pyrolysis technique. Appl Surf Sci, 2008, 254: 7042 doi: 10.1016/j.apsusc.2008.05.218[29] Rubel A H, Podder J. Structural and electrical transport properties of CdS and Al-doped CdS thin films deposited by spray pyrolysis. J Sci Res, 2012, 4(1): 11 http://www.banglajol.info/index.php/JSR/article/download/8548/6878[30] Zhang Z Y, Tang W H, F, Fu X L, et al. Electronic and luminescent properties of Cr-doped cadmium sulfide nanowires. Chin Phys B, 2006, 15(4): 773 doi: 10.1088/1009-1963/15/4/018[31] Saini H S, Singh M, Reshak A H, et al. Variation of half metallicity and magnetism of Cd1-xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit. J Magn Magn Mater, 2013, 331: 1 doi: 10.1016/j.jmmm.2012.10.044[32] Thiyagarajan R, Anusuya M, Mahaboob Beevi M. Nano structural characteristics of zirconium sulphide thin films. J Am Sci, 2009, 5(3): 26[33] Battisha I K, Afify H H, Fattah G A E, et al. Raman and photoluminescence studies of pure and Sn-enriched thin films of CdS prepared by spray pyrolysis. Fizika A, 2002, 11(1): 31[34] Tang J P, Wang L, Luo H J, et al. Magnetic properties in zinc-blende CdS induced by Cd vacancies. Phys Lett A, 2013, 377(7): 572 doi: 10.1016/j.physleta.2012.12.038[35] Wu J C, Zheng J W, Wu P, et al. Study of native defects and transition-metal (Mn, Fe, Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations. J Phys Chem C, 2011, 115: 5675 doi: 10.1021/jp109567c[36] Kulkarni J S, Kazakova O, Holmes J D. Dilute magnetic semiconductor nanowires. Appl Phys A, 2006, 85(3): 277 doi: 10.1007/s00339-006-3722-x[37] BAND2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com[38] Jain A, Hautier G, Ong S P, et al. Formation enthalpies by mixing GGA and GGA+U calculations. Phys Rev B, 2011, 84: 045115 doi: 10.1103/PhysRevB.84.045115[39] Calderon H I. Optical properties and electronic structure of wide band gap Ⅱ-Ⅵ semiconductors. New York: Taylor and Francis, 2002[40] Cotton F A. Ligand field theory. J Chem Educ, 1964, 41(9): 466 doi: 10.1021/ed041p466[41] Lefebvre P, Richard T, Alle'gre J, et al. Measurement of the optical band gap and crystal-field splitting in wurtzite CdTe. Phys Rev B, 1996, 53(23): 15440 doi: 10.1103/PhysRevB.53.15440[42] Mamouni N, Benyoussef A, Kenz A E, et al. A comparative first-principles study of Fe-, Co-and FeCo-doped ZnO with wurtzite and zinc blende structures. J Supercond Nov Magn, 2012, 25: 1579 doi: 10.1007/s10948-012-1476-6[43] Basha S M, Ramasubramanian S, Rajagopalan M, et al. Investigations of cobalt and carbon codoping in gallium nitride for spintronic applications. J Magn Magn Mater, 2012, 324: 1528 doi: 10.1016/j.jmmm.2011.11.059[44] Nakaya M, Tanaka I, Muramatsu A. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties. J Nanosci Nanotechnol, 2012, 12: 9003 doi: 10.1166/jnn.2012.6706[45] Bogle K A, Ghosh S, Dhole S D, et al. Co:CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant-defect complex formation, and unexpected magnetism. Chem Mater, 2008, 20: 440 doi: 10.1021/cm702118w[46] Hoffman D M, Meyer B K, Ekimov A I, et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun, 2000, 114: 547 doi: 10.1016/S0038-1098(00)00089-2[47] Azeem N. The electronic and the magnetic properties of Mn doped wurtzite, CdS: first-principles calculations. Comput Mater Sci, 2016, 112: 210 doi: 10.1016/j.commatsci.2015.10.039[48] Vargas H C, Espitia R M J, Baez C R E. Half-metallic ferromagnetism of ZnxMn1-xO compounds: a first-principles study. Comput Conden Matter, 2015, 4: 1 doi: 10.1016/j.cocom.2015.04.001 -
Proportional views