Citation: |
Junyu Shi, Dasheng Cui, Yuming Wu. A small signal coupling model for predicting the coupling between LNAs[J]. Journal of Semiconductors, 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002
****
J Y Shi, D S Cui, Y M Wu. A small signal coupling model for predicting the coupling between LNAs[J]. J. Semicond., 2017, 38(7): 075002. doi: 10.1088/1674-4926/38/7/075002.
|
A small signal coupling model for predicting the coupling between LNAs
DOI: 10.1088/1674-4926/38/7/075002
More Information
-
Abstract
A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is -30 dB. -
References
[1] Cohen E, Ruberto M, Cohen M, et al. A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna. IEEE Trans Microwave Theory Tech, 2013, 61(3): 1359 doi: 10.1109/TMTT.2013.2243749[2] Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508[3] Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. 2011 IEEE International Solid-State Circuits Conference, 2011: 164 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&tp=&arnumber=5746265&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5746170%29%26pageNumber%3D4[4] Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microwave Theory Tech, 2012, 60(3): 743 doi: 10.1109/TMTT.2011.2176508[5] Nagatsuma T. Terahertz technologies: present and future. IEICE Electron Express, 2011, 8(14): 1127 doi: 10.1587/elex.8.1127[6] Pfeiffer U R, Zhao Y, Grzyb J, et al. A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications. IEEE J Solid-State Circuits, 2014, 49(12): 2938 doi: 10.1109/JSSC.2014.2358570[7] Sherry H, Grzyb J, Zhao Y, et al. A 1 kpixel CMOS camera chip for 25 fps real-time terahertz imaging applications. 2012 IEEE International Solid-State Circuits Conference, 2012: 252 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=6176997&punumber%3D6171933[8] Han R, Zhang Y, Kim Y, et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circuits, 2013, 48(10): 2296 doi: 10.1109/JSSC.2013.2269856[9] Yu T, Rebeiz G M. A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization. IEEE J Solid-State Circuits, 2008, 43(9): 2134 doi: 10.1109/JSSC.2008.2001905[10] Wallace J W, Mehmood R. On the accuracy of equivalent circuit models for multi-antenna systems. IEEE Trans Antennas Propagation, 2012, 60(2): 540 doi: 10.1109/TAP.2011.2152339[11] Warnick K F, Jensen M A. Effects of mutual coupling on interference mitigation with a focal plane array. IEEE Trans Sntennas Propagation, 2005, 53(8): 2490 doi: 10.1109/TAP.2005.852278[12] Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5): 745 doi: 10.1109/4.568846[13] Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7: 1686 doi: 10.1587/elex.7.1686[14] Kargaran E, Khosrowjerdi H, Ghaffarzadegan K, et al. A 5.7 GHz low noise figure ultra high gain CMOS LNA with inter stage technique. IEICE Electron Express, 2010, 7(23): 1686 doi: 10.1587/elex.7.1686[15] Sonnet Software Inc Sonnet: User's Guide Ver. 15. 52, 2015: 74[16] Yin W Y, Pan S J, Li L W, et al. Experimental characterization of coupling effects between two on-chip neighboring square inductors. IEEE Trans Electromagnet Compatib, 2003, 45(3): 557 doi: 10.1109/TEMC.2003.815597 -
Proportional views