Citation: |
Rui Ma, Hao Zheng, Zhangming Zhu. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar[J]. Journal of Semiconductors, 2017, 38(8): 085006. doi: 10.1088/1674-4926/38/8/085006
****
R Ma, H Zheng, Z M Zhu. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar[J]. J. Semicond., 2017, 38(8): 085006. doi: 10.1088/1674-4926/38/8/085006.
|
A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar
DOI: 10.1088/1674-4926/38/8/085006
More Information
-
Abstract
This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 kΩ, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/$\sqrt {{\rm{Hz}}} $ (rms), resulting in a very low detectable input current of 1 μ A with SNR=5. -
References
[1] Ngo T H, Kim C H, Kwon Y J, et al. Wideband receiver for a three-dimensional ranging ladar system. IEEE Trans Circuits Syst I, 2013, 60(2):448 doi: 10.1109/TCSI.2012.2215800[2] Micušík D, Zimmermann H. 130 dB-DR transimpedance amplifier with monotonic logarithmic compression and high current monitor. IEEE International Solid-State Circuits Conference, 2008:78 doi: 10.1109/ISSCC.2008.4523065[3] Cho H S, Kim C H, Lee S G, et al. A high-sensitivity and lowwalk error LADAR receiver for military application. IEEE Trans Circuits Syst I, 2014, 61(10):3007 doi: 10.1109/TCSI.2014.2327282[4] Kurtti S, Kostamovaara J. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping. IEEE J Solid-State Circuits, 2009, 44(3):835 doi: 10.1109/JSSC.2008.2012364[5] Liu L X, Zou J, En Y F, et al. A high gain wide dynamic range transimpedance amplifier for optical receivers. J Semicond, 2014, 35(1):015001 doi: 10.1088/1674-4926/35/1/015001[6] Xu H, Feng J, Liu Q, et al. A 3.125-Gb/s inductroless transimpedance amplifier for optical communication in 0.35 m CMOS. J Semicond, 2011, 32(10):105003 doi: 10.1088/1674-4926/32/10/105003[7] Lu Z, Yeo K S, Lim W M, et al. Design of a CMOS broadband transimpedance amplifier with active feedback. IEEE Trans Circuits Syst I, 2010, 18(3):461 https://dr.ntu.edu.sg/bitstream/handle/10220/6265/Design%20of%20a%20CMOS%20Broadband%20Transimpedance%20Amplifier%20with%20Active%20Feedback.pdf?sequence=1[8] Song Q W, Mao L H, Xie S, et al. Novel pre-equalization transimpedance amplifier for 10 Gb/s optical interconnects. J Semicond, 2015, 36(7):075002 doi: 10.1088/1674-4926/36/7/075002[9] Mu L F, Zhang W D, He C D, et al. Design and test of capacitance detection circuit based on transimpedance amplifier. J Semicond, 2015, 36(7):075007 doi: 10.1088/1674-4926/36/7/075007[10] Palojärvi P, Ruotsalainen T, Kostamovaara J, et al. A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser range finder. IEEE J SolidState Circuits, 2005, 40(6):1341 doi: 10.1109/JSSC.2005.848022[11] Atef M. Transimpedance amplifier with a compression stage for wide dynamic range optical applications. Microelectron J, 2015, 46:593 doi: 10.1016/j.mejo.2015.04.004[12] Jansson J P, Koskinen V, Mäntyniemi A, et al. A multichannel high-precision CMOS time-to-digital converter for laserscanner-based perception systems. IEEE Trans Instrum Meas, 2012, 61(9):2581 doi: 10.1109/TIM.2012.2190343[13] Kurtti S, Kostamovaara J. An integrated laser radar receiver channel utilizing a time-domain walk error compensation scheme. IEEE Trans Instrum Meas, 2011, 60(1):146 doi: 10.1109/TIM.2010.2047663[14] Nissinen J, Nissinen I, Kostamovaara J, et al. Integrated receiver including both receiver channel and TDC for a pulsed time-offlight laser range finder with Cm-level accuracy. IEEE J SolidState Circuits, 2009, 44(5):1486 doi: 10.1109/JSSC.2009.2017006[15] Shen Y, Liu S B, Zhu Z M, et al. A 10 b 50 MS/s two-stage pipelined SAR ADC in 180 nm CMOS. J Semicond, 2016, 37(6):065001 doi: 10.1088/1674-4926/37/6/065001[16] Tang K, Meng Q, Wang Z G, et al. A low power 20 GHz comparator in 90 nm COMS technology. J Semicond, 2014, 35(5):055002 doi: 10.1088/1674-4926/35/5/055002[17] Li D, Minoia G, Repossi M, et al. A low-noise design technique for high-speed CMOS optical receivers. IEEE J Solid-State Circuits, 2014, 49(6):1437 doi: 10.1109/JSSC.2014.2322868 -
Proportional views