Citation: |
Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices[J]. Journal of Semiconductors, 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006
****
P Sheng, B M Wang, R W Li, Flexible magnetic thin films and devices[J]. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006.
|
-
Abstract
Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. -
References
[1] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911 doi: 10.1038/nature02498[2] Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321 doi: 10.1073/pnas.0502392102[3] Putz B, Schoeppner R L, Glushko O, et al. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Sci Mater, 2015, 102: 23[4] Makarov D, Melzer M, Karnaushenko D, et al. Shapeable magnetoelectronics. Appl Phys R, 2016, 3(1): 011101 doi: 10.1063/1.4938497[5] Tao L, Wang D, Jiang S, et al. Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond, 2016, 37(4): 041001 doi: 10.1088/1674-4926/37/4/041001[6] Sunkook K, Hyuk-Jun K, Sunghun L, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31): 3511 doi: 10.1002/adma.201101066[7] Yagi I, Hirai N, Miyamoto Y, et al. A flexible full-color AMOLED display driven by OTFTs. J Soc Inf Display, 2008, 16(1): 15 doi: 10.1889/1.2835023[8] Gaikwad A M, Steingart D A, Nga Ng T, et al. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett, 2013, 102: 233302 doi: 10.1063/1.4810974[9] Gingerich M D, Akhmechet R, Cogan S F, et al. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis. Invest Ophthalmol Vis Sci, 2012, 53: 535[10] Barraud C, Deranlot C, Seneor P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96(7): 911[11] Melzer M, Lin G, Makarov D, et al. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012, 24(48): 6468 doi: 10.1002/adma.v24.48[12] Vemulkar T, Mansell R, Fernández-Pacheco A, et al. toward flexible spintronics: perpendicularly magnetized synthetic antiferromagnetic thin films and nanowires on polyimide substrates. Adv Funct Mater, 2016, 26(26): 4704 doi: 10.1002/adfm.v26.26[13] Kim J, Hwang J, Song K, et al. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl Phys Lett, 2016, 108(25): 253101 doi: 10.1063/1.4954039[14] Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104(14): 827[15] Lim G H, Lee J, Kwon N, et al. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electr Mater Lett, 2016, 12(5): 574 doi: 10.1007/s13391-016-6179-x[16] Chen Y F, Mei Y, Kaltofen R, et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv Mater, 2008, 20(17): 3224 doi: 10.1002/adma.v20:17[17] Pérez N, Melzer M, Makarov D, et al. High-performance giant magnetoresistive sensorics on flexible Si membranes. Appl Phys Lett, 2015, 106(15): 153501 doi: 10.1063/1.4918652[18] Dai G, Zhan Q, Liu Y, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12): 122407 doi: 10.1063/1.3696887[19] Dai G, Zhan Q, Yang H, et al. Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys, 2013, 114(17): 173913 doi: 10.1063/1.4829670[20] Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661[21] Liu Y W, Zhan Q F, Li R W. Fabrication, properties, and applications of flexible magnetic films. Chin Phys B., 2013, 22(12): 127502 doi: 10.1088/1674-1056/22/12/127502[22] Tang Z, Wang B, Yang H, et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl Phys Lett, 2014, 105(10): 103504 doi: 10.1063/1.4895628[23] Liu Y, Zhan Q, Wang B, et al. Modulation of magnetic anisotropy in flexible multiferroic FeGa/PVDF heterostructures under various strains. IEEE Trans Magn, 2015, 51(11): 2501404[24] Polisetty S, Echtenkamp W, Jones K, et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B, 2010, 82(13): 134419 doi: 10.1103/PhysRevB.82.134419[25] Liu L P, Zhan Q F , Xin R, et al. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes. Chin Phys B, 2016, 25(7): 077307 doi: 10.1088/1674-1056/25/7/077307[26] Cao D, Wang Z, Pan L, et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl Phys A, 2016, 122(11): 938 doi: 10.1007/s00339-016-0468-y[27] Asai R, Ota S, Namazu T, et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J Appl Phys, 2016, 120(8): 083906 doi: 10.1063/1.4961564[28] Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99 doi: 10.1016/j.jmmm.2016.03.072[29] Mouhamadou G, Pierpaolo L, Fatih Z, et al. Unambiguous magnetoelastic effect on residual anisotropy in thin films deposited on flexible substrates. EPL, 2016, 114(1): 17003 doi: 10.1209/0295-5075/114/17003[30] Zhang H, Li Y Y, Yang M Y, et al. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin Phys B, 2015, 24(7): 077501 doi: 10.1088/1674-1056/24/7/077501[31] Koch R, Weber M, Thurmer K, et al. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J Magn Magn Mater, 1996, 159(1/2): L11[32] Wu X W, Rzchowski M S, Wang H S, et al. Strain-induced magnetic properties of Pr0.67Sr0.33MnO3 thin films. Phys Rev B, 2000, 61(1): 501 doi: 10.1103/PhysRevB.61.501[33] Takagi H, Tsunashima S, Uchiyama S, et al. Stress-induced anisotropy in amorphous Gd–Fe and Tb–Fe sputtered films. J Appl Phys, 1979, 50(3): 1642[34] Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62(5): 809 doi: 10.1088/0034-4885/62/5/204[35] Sander D, Enders A,Kirschner J. Stress and magnetic properties of surfaces and ultrathin films. J Magn Magn Mater, 1999, 200(1-3): 439 doi: 10.1016/S0304-8853(99)00310-8[36] Jung C U, Yamada H, Kawasaki M, et al. Magnetic anisotropy control of SrRuO3 films by tunable epitaxial strain. Appl Phys Lett, 2004, 84(14): 2590 doi: 10.1063/1.1695195[37] Yu G Q, Wang Z X, Abolfath-Beygi M, et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl Phys Lett, 2015, 106(7): 072402 doi: 10.1063/1.4907677[38] Zhang X, Zhan Q, Dai G, et al. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J Appl Phys, 2013, 113(17): 17A901 doi: 10.1063/1.4793602[39] Huang W, Zhu J, Zeng H Z, et al. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl Phys Lett, 2006, 89(26): 262506 doi: 10.1063/1.2424444[40] Thiele J U, Maat S,Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett, 2003, 82(82): 2859[41] Phuoc N N, Chai G, Ong C K. Temperature-dependent dynamic magnetization of FeCoHf thin films fabricated by oblique deposition. J Appl Phys, 2012, 112(8): 83925 doi: 10.1063/1.4763361[42] Mcdaniel T. Ultimate limits to thermally assisted magnetic recording. J Phys: Conden Matt, 2005, 17(17): R315[43] Liu Y, Wang B, Zhan Q, et al. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci Rep, 2014, 4(4): 6615[44] Lamy Y, Viala B. NiMn, IrMn, and NiO Exchange Coupled CoFe multilayers for microwave applications. IEEE Trans Magn, 2006, 42(10): 3332 doi: 10.1109/TMAG.2006.878871[45] Parkin S S P. Flexible giant magnetoresistance sensors. Appl Phys Lett, 1996, 69(20): 3092 doi: 10.1063/1.117315[46] Cui B, Song C, Wang G Y, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3(6): 2542[47] Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661[48] Blachowicz T, Tillmanns A, Fraune M, et al. Exchange bias in epitaxial CoO/Co bilayers with different crystallographic symmetries. Phys Rev B, 2007, 75(5): 054425 doi: 10.1103/PhysRevB.75.054425[49] Bai Y H, Wang X, Mu L P, et al. Theoretical investigation of influence of mechanical stress on magnetic properties of ferromagnetic/antiferromagnetic bilayers deposited on flexible substrates. Chin Phys Lett, 2016, 33(8): 087501 doi: 10.1088/0256-307X/33/8/087501[50] Pan J, Tao Y C, Hu J G. The exchange bias in ferromagnetic/ antiferromagnetic bilayers under the stress field. Acta Phys Sin, 2006, 55(6): 3032[51] Binek C, Borisov P, Chen X, et al. Perpendicular exchange bias and its control by magnetic, stress and electric fields. Eur Phys J B, 2005, 45(2): 197 doi: 10.1140/epjb/e2005-00054-2[52] Zhang Y, Zhan Q, Rong X, et al. Influence of thermal deformation on exchange bias in FeGa/IrMn bilayers grown on flexible polyvinylidene fluoride membranes. IEEE Trans Magn, 2016, 52(7): 4800104[53] Qiao X, Wang B, Tang Z, et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Adv, 2016, 6(5): 056106 doi: 10.1063/1.4943153[54] Yu Y, Zhan Q, Wei J, et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett, 2015, 106(16): 162405 doi: 10.1063/1.4918964[55] Qiao X Y, Wen X C, Wang B M. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl Phys Lett, 2017, 111: 132405 doi: 10.1063/1.4990571[56] Wen X C, Wang B M, Sheng P, et al. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl Phys Lett, 2017, 111(14): 142403 doi: 10.1063/1.4999493[57] Zhang S, Zhan Q, Yu Y, et al. Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl Phys Lett, 2016, 108(10): 102409 doi: 10.1063/1.4943943[58] Loong L M, Lee W, Qiu X, et al. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv Mater, 2016, 28(25): 4983 doi: 10.1002/adma.201600062[59] Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett, 2011, 99(6): 063108 doi: 10.1063/1.3624900[60] Li P S, Chen A T, Li D L, et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv Mater, 2014, 26(25): 4320 doi: 10.1002/adma.v26.25[61] Barangi M,Mazumder P. Straintronics-based magnetic tunneling junction: dynamic and static behavior analysis and material investigation. Appl Phys Lett, 2014, 104(16): 162403 doi: 10.1063/1.4873128[62] Bradley D. Graphene straintronics CARBON. Mater Today, 2012, 15(5): 185[63] Cai Y Q, Bai Z Q, Yang M, et al. Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/ Co2CrAl magnetic tunneling junction. EPL, 2012, 99(3): 37001 doi: 10.1209/0295-5075/99/37001[64] Fashami M S, Munira K, Bandyopadhyay S, et al. Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: reliability of nanomagnetic logic. IEEE Trans Nanotechnol, 2013, 12(6): 1206 doi: 10.1109/TNANO.2013.2284777[65] Mamin H J, Gurney B A, Wilhoit D R, et al. High sensitivity spin-valve strain sensor. Appl Phys Lett, 1998, 72(24): 3220 doi: 10.1063/1.121555[66] Linville E, Han D, Judy J, et al. Stress effects on the magnetic properties of FeMn and NiMn spin valves. IEEE Trans Magn, 1998, 34(4): 894 doi: 10.1109/20.706303[67] Han D H, Zhu J G, Judy J H, et al. Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves. J Appl Phys, 1997, 81(8): 4519 doi: 10.1063/1.364935[68] Oezkaya B, Saranu S R, Mohanan S, et al. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A, 2008, 205(8): 1876 doi: 10.1002/pssa.v205:8[69] Oksuzoglu R M, Schug C, York B. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves. J Magn Magn Mater, 2004, 280(2/3): 304[70] Qian L J, Xu X Y, Hu J G. The magnetoresistive effect induced by stress in spin-valve structures. Chin Phys B, 2009, 18(6): 2589 doi: 10.1088/1674-1056/18/6/078[71] Tsu I F, Burg G A, Wood W P. Degradation of spin valve heads under accelerated stress conditions. IEEE Trans Magn, 2001, 37(4): 1707 doi: 10.1109/20.950944[72] Xu X, Li M, Hu J, et al. Strain-induced magnetoresistance for novel strain sensors. J Appl Phys, 2010, 108(3): 033916 doi: 10.1063/1.3465299[73] Shirota Y, Tsunashima S, Imada R, et al. Giant magnetoresistance effect in CoFeB/Cu/CoFeB spin valves. Jpn J Appl Phys, Part 1, 1999, 38(2A): 714[74] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7): 4828 doi: 10.1103/PhysRevB.39.4828[75] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21): 2472 doi: 10.1103/PhysRevLett.61.2472[76] Parkin S S P, Roche K P, Suzuki T. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn J Appl Phys, Part 2, 1992, 31(9A): L1246[77] Uhrmann T, Bär L, Dimopoulos T, et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J Magn Magn Mater, 2006, 307(2): 209 doi: 10.1016/j.jmmm.2006.03.070[78] Li H, Zhan Q, Liu Y, et al. stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinkles. ACS Nano, 2016, 10(4): 4403 doi: 10.1021/acsnano.6b00034[79] Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080 doi: 10.1038/ncomms7080 -
Proportional views