Citation: |
Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics[J]. Journal of Semiconductors, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007
****
T Das, Bhupendra K. Sharma, Ajit K. Katiyar, J Ahn, Graphene-based flexible and wearable electronics[J]. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007.
|
Graphene-based flexible and wearable electronics
DOI: 10.1088/1674-4926/39/1/011007
More Information
-
Abstract
Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted. -
References
[1] Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499(7459): 458 doi: 10.1038/nature12314[2] Drack M, Graz I, Sekitani T, et al. An imperceptible plastic electronic wrap. Adv Mater, 2014, 27(1): 34[3] Keum H, Mccormick M, Liu P, et al. Epidermal Electronics. Science, 2011, 333: 838 doi: 10.1126/science.1206157[4] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36[5] Norton J J S, Lee D S, Lee J W, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci, 2015, 112(13): 3920 doi: 10.1073/pnas.1424875112[6] Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25(20): 2773 doi: 10.1002/adma.201204426[7] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81(1): 109 doi: 10.1103/RevModPhys.81.109[8] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877[9] Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extrem Mech Lett, 2017, 13: 42 doi: 10.1016/j.eml.2017.01.008[10] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996[11] Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183 doi: 10.1038/nmat1849[12] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10): 351[13] Sprinkle M, Ruan M, Hu Y, et al. Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol, 2010, 5: 727 doi: 10.1038/nnano.2010.192[14] Wassei J K, Kaner R B. Graphene, a promising transparent conductor. Mater Today, 2010, 13(3): 52 doi: 10.1016/S1369-7021(10)70034-1[15] Stylianakis M M, Konios D, Petridis K, et al. Solution-processed graphene-based transparent conductive electrodes as ideal ITO alternatives for organic solar cells. Graphene Materials - Advanced Applications, 2017[16] Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896[17] Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191 doi: 10.1126/science.1125925[18] Ohta T. Controlling the electronic structure of bilayer graphene. Science, 2006, 313(5789): 951 doi: 10.1126/science.1130681[19] Sutter P W, Flege J I, Sutter E. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7(5): 406 doi: 10.1038/nmat2166[20] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3(5): 270 doi: 10.1038/nnano.2008.83[21] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008, 3(9): 1[22] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245[23] Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene. Chem Vap Depos, 2013, 19(10-12): 297[24] Fang W, Hsu A L, Song Y, et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, 2015, 7(48): 20335 doi: 10.1039/C5NR04756K[25] Lee S M, Kim J H, Ahn J H. Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater Today, 2015, 18(6): 336 doi: 10.1016/j.mattod.2015.01.017[26] Katsnelson M I. Graphene: carbon in two dimensions. Mater Today, 2007, 10(1/2): 20[27] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312 doi: 10.1126/science.1171245[28] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9(1): 30 doi: 10.1021/nl801827v[29] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282 doi: 10.1038/nature04969[30] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558 doi: 10.1016/j.carbon.2007.02.034[31] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549 doi: 10.1038/nature09579[32] Byun S, Lim H, Shin G, et al. Graphenes converted from polymers. J Phys Chem Lett, 2011, 2(5): 493 doi: 10.1021/jz200001g[33] Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 2011, 5(2): 1321 doi: 10.1021/nn103028d[34] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010, 10(2): 490 doi: 10.1021/nl903272n[35] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706 doi: 10.1038/nature07719[36] Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett, 2009, 9(12): 4359 doi: 10.1021/nl902623y[37] Kang, J, Shin, D, Bae, S, et al. Graphene transfer: key for applications. Nanoscale, 2012, 4(18): 5527 doi: 10.1039/c2nr31317k[38] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132[39] Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 2011, 5(9): 6916 doi: 10.1021/nn201207c[40] Suk J W, Lee W H, Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett, 2013, 13(4): 1462 doi: 10.1021/nl304420b[41] Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films. Nature, 2013, 505(7482): 190 doi: 10.1038/nature12763[42] Kobayashi T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 23112 doi: 10.1063/1.4776707[43] Kobayashi, T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 2013, 102(2): 1[44] Biswas C, Lee Y H. Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater, 2011, 21(20): 3806 doi: 10.1002/adfm.v21.20[45] Sharma B K, Ahn J H. Graphene based field effect transistors: efforts made towards flexible electronics. Solid. State. Electron, 2013, 89: 177 doi: 10.1016/j.sse.2013.08.007[46] Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7): 487 doi: 10.1038/nnano.2010.89[47] Matyba P, Yamaguchi H, Eda G, et al. Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano, 2010, 4(2): 637 doi: 10.1021/nn9018569[48] Park H, Chang S, Zhou X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett, 2014, 14(9): 5148 doi: 10.1021/nl501981f[49] Park S J, Kwon O S, Lee S H, et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett, 2012, 12(10): 5082 doi: 10.1021/nl301714x[50] Sire C, Ardiaca F, Lepilliet S, et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett, 2012, 12(3): 1184 doi: 10.1021/nl203316r[51] Lu C, Lin Y, Yeh C, et al. High Mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano, 2012, 6(5): 4469 doi: 10.1021/nn301199j[52] Yan L, Zhang Y, Zhang X, et al. Single layer graphene electrodes for quantum dot-light emitting diodes. Nanotechnology, 2015, 26(13): 135201 doi: 10.1088/0957-4484/26/13/135201[53] Yeh C H, Lain Y W, Chiu Y C, et al. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano, 2014, 8(8): 7663 doi: 10.1021/nn5036087[54] Lee S, Lee K, Liu C H, et al. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat Commun, 2012, 3(V): 1018[55] Lee J, Ha T J, Li H, et al. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7(9): 7744 doi: 10.1021/nn403487y[56] Kim B J, Jang H, Lee S K, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 2010, 10(9): 3464 doi: 10.1021/nl101559n[57] Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642 doi: 10.1021/nl202134z[58] Kim B J, Lee S K, Kang M S, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 2012, 6(10): 8646 doi: 10.1021/nn3020486[59] Lee S K, Jang H Y, Jang S, et al. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett, 2012, 12(7): 3472 doi: 10.1021/nl300948c[60] Lee S K, Kabir S M H, Sharma B K, et al. Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25(1): 14002 doi: 10.1088/0957-4484/25/1/014002[61] Lin Y M, Dimitrakopoulos, C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327(5966): 662 doi: 10.1126/science.1184289[62] Liao L, Lin Y C, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467(7313): 305 doi: 10.1038/nature09405[63] Wu Y, Lin Y, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472(7341): 74 doi: 10.1038/nature09979[64] Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys, 1986, 60(11): R123 doi: 10.1063/1.337534[65] Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol, 2005, 20(4): S35 doi: 10.1088/0268-1242/20/4/004[66] Granqvist C G. Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells, 2007, 91(17): 1529 doi: 10.1016/j.solmat.2007.04.031[67] De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 2009, 3(7): 1767 doi: 10.1021/nn900348c[68] Kou P, Yang L, Chang C, et al. Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep, 2017, 7: 42052 doi: 10.1038/srep42052[69] Cui Z, Gao Y. Hybrid printing of high resolution metal mesh as a transparent conductor for touch panels and OLED displays. SID Symp Dig Tech Pap, 2015, 46(1): 398 doi: 10.1002/sdtp.10366[70] Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493 doi: 10.1080/14686996.2016.1214526[71] Luo M, Liu Y, Huang W, et al. Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines, 2017, 8(1): 12[72] Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23(25): 2779 doi: 10.1002/adma.201100304[73] Pickering J A. Touch-sensitive screens: the technologies and their application. Int J Man Mach Stud, 1986, 25: 249 doi: 10.1016/S0020-7373(86)80060-8[74] Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014, 8(1): 950 doi: 10.1021/nn405754d[75] Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2010, 4(1): 43 doi: 10.1021/nn900728d[76] Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 2010, 20(17): 2893 doi: 10.1002/adfm.201000900[77] Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105 doi: 10.1038/nphoton.2011.318[78] Lee J, Han T H, Park M H, et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat Commun, 2016, 7: 11791 doi: 10.1038/ncomms11791[79] Gather M C, Reineke S. Recent advances in light outcoupling from white organic light-emitting diodes. J Photonics Energy, 2015, 5(1): 57607 doi: 10.1117/1.JPE.5.057607[80] Kim S Y, Kim J J. Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org Electron, 2010, 11(6): 1010[81] Furno M, Meerheim R, Hofmann S, et al. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B, 2012, 85(11): 115205[82] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8(1): 323 doi: 10.1021/nl072838r[83] Eda G, Lin Y Y, Miller S, et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett, 2008, 92(23): 233305 doi: 10.1063/1.2937846[84] Valentini L, Cardinali M, Bon S B, et al. Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem, 2010, 20(5): 995 doi: 10.1039/B919327H[85] Kalita G, Matsushima M, Uchida H, et al. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem, 2010, 20(43): 9713 doi: 10.1039/c0jm01352h[86] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25(5): 676 doi: 10.1063/1.1721711[87] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables(version 49). Prog Photovolt Res Appl, 2017, 25(1): 3 doi: 10.1002/pip.2855[88] Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95(6): 63302 doi: 10.1063/1.3204698[89] Park H, Rowehl J A, Kim K K, et al. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204 doi: 10.1088/0957-4484/21/50/505204[90] De Arco L G, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865 doi: 10.1021/nn901587x[91] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 2010, 4(6): 3169 doi: 10.1021/nn100551j[92] Kymakis E, Savva K, Stylianakis M M, et al. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater, 2013, 23(21): 2742 doi: 10.1002/adfm.v23.21[93] Lee S, Yeo J S, Ji Y, et al. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 2012, 23(34): 344013 doi: 10.1088/0957-4484/23/34/344013[94] Liu Z, Li J, Yan F. Package-free flexible organic solar cells with graphene top electrodes. Adv Mater, 2013, 25(31): 4296 doi: 10.1002/adma.v25.31[95] Kim H, Bae S H, Han T H, et al. Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25(1): 14012 doi: 10.1088/0957-4484/25/1/014012[96] Kim K, Bae S H, Toh C T, et al. Ultrathin organic solar cells with graphene doped by ferroelectric polarization. ACS Appl Mater Interfaces, 2014, 6(5): 3299 doi: 10.1021/am405270y[97] Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater, 2014, 26(13): 2022 doi: 10.1002/adma.201304742[98] Tian H, Shu Y, Wang X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5(1): 8603 doi: 10.1038/srep08603[99] Chun S, Hong A, Choi Y, et al. A tactile sensor using a conductive graphene-sponge composite. Nanoscale, 2016, 8(17): 9185 doi: 10.1039/C6NR00774K[100] Bae S, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048[101] Park Y J, Lee S K, Kim M S, et al. Graphene-based conformal devices. ACS Nano, 2014, 8(8): 7655 doi: 10.1021/nn503446f[102] Yang T, Wang W, Zhang H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano, 2015, 9(11): 10867 doi: 10.1021/acsnano.5b03851[103] Kang M, Kim J, Jang B, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano, 2017, 11(8): 7950 doi: 10.1021/acsnano.7b02474[104] Ameri S K, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano, 2017, 11(8): 7634 doi: 10.1021/acsnano.7b02182[105] Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol, 2016, 11(6): 566 doi: 10.1038/nnano.2016.38[106] Kim J, Kim M, Lee M S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun, 2017, 8: 14997 doi: 10.1038/ncomms14997[107] Wang Z L. Self-powered nanotech. Sci Am, 2008, 1: 82[108] Wang Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242 doi: 10.1126/science.1124005[109] Wang Z L, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci, 2015, 8(8): 2250 doi: 10.1039/C5EE01532D[110] Grande L, Chundi V T, Wei D, et al. Graphene for energy harvesting/storage devices and printed electronics. Particuology, 2012, 10(1): 1 doi: 10.1016/j.partic.2011.12.001[111] Zheng Q, Shi B, Li Z, et al. Recent Progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci, 2017, 4(7): 1700029 doi: 10.1002/advs.v4.7[112] Nam G H, Baek S H, Cho C H, et al. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale, 2014, 6(20): 11653 doi: 10.1039/C4NR02318H[113] Song R, Jin H, Li X, et al. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J Mater Chem A, 2015, 3(29): 14963 doi: 10.1039/C5TA03349G[114] Kumar B, Lee K Y, Park H K, et al. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano, 2011, 5(5): 4197 doi: 10.1021/nn200942s[115] Bae S H, Kahya O, Sharma B K, et al. Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 2013, 7(4): 3130 doi: 10.1021/nn400848j[116] Lee J H, Lee K Y, Kumar B, et al. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci, 2013, 6(1): 169 doi: 10.1039/C2EE23530G[117] Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater, 2014, 26(5): 765 doi: 10.1002/adma.201303570[118] He X, Guo H, Yue X, et al. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015, 7(5): 1896 doi: 10.1039/C4NR05512H[119] Liu C, Hua B, You S, et al. Self-amplified piezoelectric nanogenerator with enhanced output performance: the synergistic effect of micropatterned polymer film and interweaved silver nanowires. Appl Phys Lett, 2015, 106: 163901 doi: 10.1063/1.4918986[120] Bae J, Park Y J, Lee M, et al. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater, 2011, 23(30): 3446 doi: 10.1002/adma.201101345[121] Kwon J, Seung W, Sharma B K, et al. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci, 2012, 5(10): 8970 doi: 10.1039/c2ee22251e[122] Khan U, Kim T H, Ryu H, et al. Graphene tribotronics for electronic skin and touch screen applications. Adv Mater, 2017, 29(1): 1603544 doi: 10.1002/adma.201603544[123] Chu H, Jang H, Lee Y, et al. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 2016, 27: 298 doi: 10.1016/j.nanoen.2016.07.009[124] Kim S, Gupta M. Transparent flexible graphene triboelectric nanogenerators. Adv Mater, 2014, 26(23): 3918 doi: 10.1002/adma.201400172 -
Proportional views