J. Semicond. > 2018, Volume 39 > Issue 10 > 101001

INVITED REVIEW PAPERS

InP-based monolithically integrated few-mode devices

Dan Lu1, 2, 3, , Yiming He1, 2, 3, Zhaosong Li1, 2, 3, Lingjuan Zhao1, 2, 3 and Wei Wang1, 2, 3

+ Author Affiliations

 Corresponding author: Dan Lu, Email: ludan@semi.ac.cn

DOI: 10.1088/1674-4926/39/10/101001

PDF

Turn off MathJax

Abstract: Mode-division multiplexing (MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguide-based on-chip optical interconnects. Mode manipulation devices are indispensable in MDM system and have been widely studied in fiber, planar lightwave circuits, and silicon and InP based platforms. InP-based integration technology provides the easiest accessibility to bring together the functions of laser sources, modulators, and mode manipulation devices into a single chip, making it a promising solution for fully integrated few-mode transmitters in the MDM system. This paper reviews the recent progress in InP-based mode manipulation devices, including the few-mode converters, multiplexers, demultiplexers, and transmitters. The working principle, structures, and performance of InP-based few-mode devices are discussed.

Key words: mode division multiplexingmode convertermode multiplexerfew mode transmittersphotonics integrated circuit



[1]
Soma D, Wakayama Y, Beppu S, et al. 10.16-Peta-bit/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C + L band. J Light Technol, 2018, 36(6): 2799380
[2]
Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13(23): 009381 doi: 10.1364/OPEX.13.009381
[3]
Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30(15): 2199961
[4]
Ding Y, Xu J, Ros F Da, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21(8): 010376 doi: 10.1364/OE.21.010376
[5]
Xing J, Li Z, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38(17): 003468 doi: 10.1364/OL.38.003468
[6]
Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 4069 doi: 10.1038/ncomms5069
[7]
Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 028376 doi: 10.1364/OE.23.028376
[8]
Qiu J, Zhou D, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7(5): 2486719
[9]
Leuthold J, Eckner J, Gamper E, et al. Multimode interference couplers for the conversion and combining of zero- and first-order modes. J Light Technol, 1998, 16(7): 701401
[10]
Guo F, Lu D, Zhang R, et al. An MMI-based mode (DE)MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol Lett, 2016, 28(21): 2599934
[11]
Guo F, Lu D, Zhang R, et al. Two-mode converters at 1.3 μm based on multimode interference couplers on inp substrates. Chin Phys Lett, 2016, 33(2): 024203 doi: 10.1088/0256-307X/33/2/024203
[12]
Zhang L M, Lu D, Li Z S, et al. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond, 2016, 37(12): 124005 doi: 10.1088/1674-4926/37/12/124005
[13]
Li Z, Lu D, Zuo B, et al. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications. Chine Opt Lett, 2016, 14(8): 080601 doi: 10.3788/COL
[14]
Li Z, Lu D, Zhao L, et al. An InP-based two-mode converter/(de) multiplexer with 100% mode conversion efficiency by using multimode interference couplers as the building blocks. Conf Lasers Electr-Optics, 2016: JW2A.123
[15]
Guo F, Lu D, Zhang R, et al. Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP. SPIE Photonics West, 2016: 97500Z
[16]
Melati D, Alippi A, Melloni A. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. Opt Express, 2016, 24(12): 012625 doi: 10.1364/OE.24.012625
[17]
Li Z, Lu D, He Y, et al. An InP-based directly modulated monolithic integrated few-mode transmitter. Photonics Res, 2018, 6(5): 000463 doi: 10.1364/PRJ.6.000463
[18]
Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res, 2013, 143: 13111003
[19]
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38(9): 001422 doi: 10.1364/OL.38.001422
[20]
Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express, 2012, 20(12): 013425 doi: 10.1364/OE.20.013425
[21]
Schmid J H, Lamontagne B, Cheben P, et al. Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides. IEEE Photonics Technol Lett, 2007, 19(11): 897461
[22]
Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38(11): 001854 doi: 10.1364/OL.38.001854
[23]
Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51(15): 002778 doi: 10.1364/AO.51.002778
[24]
Li Y, Li C, Li C, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22(5): 005781 doi: 10.1364/OE.22.005781
[25]
Guo F, Lu D, Zhang R, et al. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photonics J, 2016, 8(1): 2523986
[26]
Bachmann M, Besse P, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Appl Opt, 1994, 33(18): 003905 doi: 10.1364/AO.33.003905
[27]
Izutsu M, Nakai Y, Sueta T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt Lett, 1982, 7(3): 000136 doi: 10.1364/OL.7.000136
[28]
Van der Tol J J G M, Pedersen J W, Metaal E G, et al. Mode evolution type polarization splitter on InGaAsP/InP. IEEE Photonics Technol Lett, 1993, 5(12): 262558
[29]
Han L, Liang S, Zhu H, et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt Lett, 2015, 40(4): 000518 doi: 10.1364/OL.40.000518
[30]
Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29(8): 083001 doi: 10.1088/0268-1242/29/8/083001
Fig. 1.  (Color online) Schematic configuration of (a) a few-mode transmitter and (b) a few-mode receiver.

Fig. 2.  (Color online) Mode converters using (a) asymmetrical directional couplers and (b) tapered structure.

Fig. 3.  (Color online) Mode converters using (a) a 3 × 3 MMI as a 66%-MMI-converter and (b) a 1 × 2 MMI and a 4 × 4 MMI as a 100%-MMI-converter (Ref. [9]).

Fig. 4.  (Color online) Mode converter-multiplexers with mode conversion of (a) 66% and (b) 100% (Ref. [9]).

Fig. 5.  (Color online) (a) Mode converters-multiplexer using symmetrical Y-junction and (b) mode converter-demultiplexer using asymmetrical Y-junction.

Fig. 6.  (Color online) (a) Epitaxial structure of the MMI-based mode converters, (b) schematic structures, and (c) the experimentally observed mode patterns corresponding to 50%- and 66%-MMI-converter (Ref. [11]).

Fig. 8.  (Color online) A 100%-MMI-converter-multiplexer based on a 1 × 1 MMI phase-shifter. (a) The schematic device structure, (b) the simulated field distribution, and (c) the mode patterns (Ref. [14]).

Fig. 9.  (Color online) A 100%-MMI-converter-multiplexer based on MMI-Y-junction. (a) The schematic device structure, (b) the simulated field distribution, and (c) the mode patterns. (Ref. [25]).

Fig. 7.  (Color online) A 100%-MMI-converter-multiplexer scheme based on a core-thickness-detuned phase-shifter. (a) The schematic device structure, (b) the simulated phase shift versus the core layer thickness of the PS when the thicknesses of other waveguides are fixed at 300 nm, (c) the simulated influence of PS length on the insertion loss, (d) SEM images of the fabricated device, and (e) the mode patterns (Ref. [10]).

Fig. 10.  (Color online) Reconfigurable mode C/M/D. (a) The schematic device structure, (b) the device picture, (c) the mode patterns corresponding to different phase controller voltage, (d) MDM transmission setup, and (e) the obtained eye diagram (Ref. [16]).

Fig. 11.  (Color online)(a) The schematic device structure, (b) the epitaxial structure, (c) the device picture, (d) the waveguide modes and the excited fiber modes, (e) the eye diagram, and (f) the BER curve of the few-mode transmitter (Ref. [17]).

3 × 3 MMI
N = 3 j = 1 j = 2 j = 3
i = 1 −3π/3 −2π/3 −5π/3
i = 2 −2π/3 −3π/3 −2π/3
i = 3 −5π/3 −2π/3 −3π/3
DownLoad: CSV
4 × 4 MMI
N = 4 j = 1 j = 2 j = 3 j = 4
i = 1 −4π/4 −3π/4 −7π/4 −4π/4
i = 2 −3π/4 −4π/4 −4π/4 −7π/4
i = 3 −7π/4 −4π/4 −4π/4 −3π/4
i = 4 −4π/4 −7π/4 −3π/4 −4π/4
DownLoad: CSV

Table 1.   Phase-relations of the general 2 × 2 MMI, 3 × 3 MMI and 4 × 4 MMI. i is the input port number, and j is the output port number.

2 × 2 MMI
N = 2 j = 1 j = 2
i = 1 −2π/2 −π/2
i = 2 −π/2 −2π/2
DownLoad: CSV

Table 2.   The waveguide TE1 modes obtained from a 66%-MMI-converter and the excited fiber LP11 modes at various wavelengths in the C-band (Ref. [12]).

1520 nm 1540 nm 1550 nm 1565 nm
Waveguide mode TE1
Fiber mode LP11
DownLoad: CSV
[1]
Soma D, Wakayama Y, Beppu S, et al. 10.16-Peta-bit/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C + L band. J Light Technol, 2018, 36(6): 2799380
[2]
Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13(23): 009381 doi: 10.1364/OPEX.13.009381
[3]
Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30(15): 2199961
[4]
Ding Y, Xu J, Ros F Da, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21(8): 010376 doi: 10.1364/OE.21.010376
[5]
Xing J, Li Z, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38(17): 003468 doi: 10.1364/OL.38.003468
[6]
Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 4069 doi: 10.1038/ncomms5069
[7]
Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 028376 doi: 10.1364/OE.23.028376
[8]
Qiu J, Zhou D, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7(5): 2486719
[9]
Leuthold J, Eckner J, Gamper E, et al. Multimode interference couplers for the conversion and combining of zero- and first-order modes. J Light Technol, 1998, 16(7): 701401
[10]
Guo F, Lu D, Zhang R, et al. An MMI-based mode (DE)MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol Lett, 2016, 28(21): 2599934
[11]
Guo F, Lu D, Zhang R, et al. Two-mode converters at 1.3 μm based on multimode interference couplers on inp substrates. Chin Phys Lett, 2016, 33(2): 024203 doi: 10.1088/0256-307X/33/2/024203
[12]
Zhang L M, Lu D, Li Z S, et al. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond, 2016, 37(12): 124005 doi: 10.1088/1674-4926/37/12/124005
[13]
Li Z, Lu D, Zuo B, et al. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications. Chine Opt Lett, 2016, 14(8): 080601 doi: 10.3788/COL
[14]
Li Z, Lu D, Zhao L, et al. An InP-based two-mode converter/(de) multiplexer with 100% mode conversion efficiency by using multimode interference couplers as the building blocks. Conf Lasers Electr-Optics, 2016: JW2A.123
[15]
Guo F, Lu D, Zhang R, et al. Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP. SPIE Photonics West, 2016: 97500Z
[16]
Melati D, Alippi A, Melloni A. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. Opt Express, 2016, 24(12): 012625 doi: 10.1364/OE.24.012625
[17]
Li Z, Lu D, He Y, et al. An InP-based directly modulated monolithic integrated few-mode transmitter. Photonics Res, 2018, 6(5): 000463 doi: 10.1364/PRJ.6.000463
[18]
Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res, 2013, 143: 13111003
[19]
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38(9): 001422 doi: 10.1364/OL.38.001422
[20]
Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express, 2012, 20(12): 013425 doi: 10.1364/OE.20.013425
[21]
Schmid J H, Lamontagne B, Cheben P, et al. Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides. IEEE Photonics Technol Lett, 2007, 19(11): 897461
[22]
Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38(11): 001854 doi: 10.1364/OL.38.001854
[23]
Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51(15): 002778 doi: 10.1364/AO.51.002778
[24]
Li Y, Li C, Li C, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22(5): 005781 doi: 10.1364/OE.22.005781
[25]
Guo F, Lu D, Zhang R, et al. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photonics J, 2016, 8(1): 2523986
[26]
Bachmann M, Besse P, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Appl Opt, 1994, 33(18): 003905 doi: 10.1364/AO.33.003905
[27]
Izutsu M, Nakai Y, Sueta T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt Lett, 1982, 7(3): 000136 doi: 10.1364/OL.7.000136
[28]
Van der Tol J J G M, Pedersen J W, Metaal E G, et al. Mode evolution type polarization splitter on InGaAsP/InP. IEEE Photonics Technol Lett, 1993, 5(12): 262558
[29]
Han L, Liang S, Zhu H, et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt Lett, 2015, 40(4): 000518 doi: 10.1364/OL.40.000518
[30]
Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29(8): 083001 doi: 10.1088/0268-1242/29/8/083001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5776 Times PDF downloads: 188 Times Cited by: 0 Times

    History

    Received: 15 April 2018 Revised: 30 May 2018 Online: Accepted Manuscript: 23 July 2018Uncorrected proof: 23 July 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dan Lu, Yiming He, Zhaosong Li, Lingjuan Zhao, Wei Wang. InP-based monolithically integrated few-mode devices[J]. Journal of Semiconductors, 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001 ****D Lu, Y M He, Z S Li, L J Zhao, W Wang, InP-based monolithically integrated few-mode devices[J]. J. Semicond., 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001.
      Citation:
      Dan Lu, Yiming He, Zhaosong Li, Lingjuan Zhao, Wei Wang. InP-based monolithically integrated few-mode devices[J]. Journal of Semiconductors, 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001 ****
      D Lu, Y M He, Z S Li, L J Zhao, W Wang, InP-based monolithically integrated few-mode devices[J]. J. Semicond., 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001.

      InP-based monolithically integrated few-mode devices

      DOI: 10.1088/1674-4926/39/10/101001
      Funds:

      Project supported by the State Key Development Program for Basic Research of China (No. 2014CB340102), the National Key Research & Development (R&D) Plan (No. 2016YFB0402301), and the National Natural Science Foundation of China (No. 61335009).

      More Information
      • Corresponding author: Email: ludan@semi.ac.cn
      • Received Date: 2018-04-15
      • Revised Date: 2018-05-30
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return