Citation: |
Xiaohong Li, Ruirong Wang, Tong Chen. Static performance model of GaN MESFET based on the interface state[J]. Journal of Semiconductors, 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003
****
X H Li, R R Wang, T Chen, Static performance model of GaN MESFET based on the interface state[J]. J. Semicond., 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003.
|
Static performance model of GaN MESFET based on the interface state
DOI: 10.1088/1674-4926/39/12/124003
More Information
-
Abstract
This paper presents a new model to study the static performances of a GaN metal epitaxial-semiconductor field effect transistor (MESFET) based on the metal–semiconductor interface state of the Schottky junction. The I–V performances of MESFET under different channel lengths and different operating systems (pinch-off or not) have been achieved by our model, which strictly depended on the electrical parameters, such as the drain-gate capacity Cgd, the source–gate capacity Cgs, the transconductance, and the conductance. To determine the accuracy of our model, root-mean-square (RMS) errors were calculated. In the experiment, the experimental data agree with our model. Also, the minimum value of the electrical parameter has been calculated to get the maximum cut-off frequency for the GaN MESFET.-
Keywords:
- GaN MESFET,
- static performance model,
- interface states
-
References
[1] Gačević Ž, LópezRomero D, Mangas T J, et al. A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control. Appl Phys Lett, 2016, 108(3): 310[2] Atalla M R M, Elahi A M N, Mo C, et al. On the design of GaN vertical MESFETs on commercial LED sapphire wafers. Solid-State Electron, 2016, 126: 23 doi: 10.1016/j.sse.2016.09.019[3] Li J, Guo H, Liu J, et al. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications. Nanoscale Res Lett, 2013, 8: 218 doi: 10.1186/1556-276X-8-218[4] Ciarlet P G, Ciarlet P, Sauter S A, et al. Intrinsic finite element methods for the computation of fluxes for Poisson’s equation. Numerische Mathematik, 2016, 132(3): 433 doi: 10.1007/s00211-015-0730-9[5] Shin D, Lee Y, Sasaki M, et al. Violation of Ohm’s law in a Weyl metal. Nat Mater, 2017, 16: 1096 doi: 10.1038/nmat4965[6] Biswal S M, Baral B, De D, et al. Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET. Superlattices Microstruct, 2016, 91: 319 doi: 10.1016/j.spmi.2016.01.021[7] Adams J A, Thayne I G, Beaumont S P, et al. Carrier transit delays in nanometer-scale GaAs MESFETs. IEEE Electron Device Lett, 1993, 14: 85 doi: 10.1109/55.215121[8] Mckee R A, Walker F J, Nardelli M B, et al. The interface phase and the Schottky barrier for a crystalline dielectric on silicon. Science, 2003, 300(5626): 1726 doi: 10.1126/science.1083894[9] Anugrah Y, Robbins M C, Crowell P A, et al. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene. Appl Phys Lett, 2015, 106(10): 372[10] Memon N M, Ahmed M M, Rehman F. A comprehensive four parameters I–V model for GaAs MESFET output performances. Solid-State Electron, 2007, 51: 511 doi: 10.1016/j.sse.2006.12.011[11] Li D, Cheng R, Zhou H, et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat Commun, 2015, 6: 7509 doi: 10.1038/ncomms8509[12] Rodilla H, Schleeh J, Nilsson P A, et al. Cryogenic performance of low-noise InP HEMTs: a Monte Carlo study. IEEE Trans Electron Devices, 2013, 60(5): 1625 doi: 10.1109/TED.2013.2253469[13] Azizi M, Azizi C, Zaabat M. Effect of the electric field on the carrier mobility for GaAs MESFET’s with submicron gate. J Electron Devices, 2015, 22: 1880[14] Islam M S, Zaman M M. A seven parameter nonlinear I–V performances model for sub-μm range GaN MESFET’s. Solid State Electron, 2004, 48: 1111 doi: 10.1016/j.sse.2004.01.007 -
Supplements
18040002supp.pdf
-
Proportional views