J. Semicond. > 2018, Volume 39 > Issue 2 > 022002

SEMICONDUCTOR PHYSICS

Simulation model for electron irradiated IGZO thin film transistors

G K Dayananda1, , C Shantharama Rai2, A Jayarama3 and Hyun Jae Kim4

+ Author Affiliations

 Corresponding author: G K Dayananda, Email: dayanand.gk@gmail.com

DOI: 10.1088/1674-4926/39/2/022002

PDF

Turn off MathJax

Abstract: An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In–Ga–Zn–O (IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.

Key words: simulation modelIGZOTFTelectron irradiation



[1]
Kamiya T, Nomura K, Hosono H. Present status of amorphous IGZO thin-film transistors. Sci Technol Adv Mater, 2015, 11(4): 044305
[2]
Ito M, Kon M, Miyazaki C, et al. Amorphous oxide TFT and their applications in electrophoretic displays. Phys Status Solidi, 2008, 205(8): 1885 doi: 10.1002/pssa.v205:8
[3]
Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with co-sputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91: 113505 doi: 10.1063/1.2783961
[4]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2007, 516(7): 1516
[5]
Hsieh H H, Kamiya T, Nomura K, et al. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Jpn Appl Phys Lett, 2008, 92: 133503 doi: 10.1063/1.2857463
[6]
Fung T C, Chuang C S, Chen C, et al. Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. J Appl Phys, 2009, 106: 084511 doi: 10.1063/1.3234400
[7]
Park J H, Lee S, Jeon K, et al. Density of states-based DC I–V model of amorphous gallium–indium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2009, 30(10): 1069 doi: 10.1109/LED.2009.2028042
[8]
Short K, Buren D. Printable spacecraft: flexible electronics platforms for NASA mission’s. NASA Innovative Advanced Concepts (NAIC), Phase 2 Final Report Printable Spacecraft, September 2014
[9]
Rafí J M, Campabadal F, Ohyama H, et al. 2 MeV electron irradiation effects on the electrical characteristics of metal–oxide–silicon capacitors with atomic layer deposited Al2O3, HfO2 and nanolaminated dielectrics. Solid-State Electron, 2013, 79: 65 doi: 10.1016/j.sse.2012.06.011
[10]
Indluru A, Holbert K E, Alford T L. Gamma radiation effects on indium–zinc oxide thin-film transistors. Thin Solid Films, 2013, 539: 342 doi: 10.1016/j.tsf.2013.04.148
[11]
Cramer T, Sacchetti A, Lobato M T, et al. Radiation-tolerant flexible large-area electronics based on oxide semiconductors. Adv Electron Mater, 2016, 2: 1500489 doi: 10.1002/aelm.v2.7
[12]
Liu Y, Wu W, En Y, et al. Total dose ionizing radiation effects in the indium–zinc oxide thin-film transistors. IEEE Electron Device Lett, 2014, 35(3): 369 doi: 10.1109/LED.2014.2301801
[13]
Kim H J. International collaboration for advanced AMOLED. ICAA Koranet Annual Conference, South Korea, 2010
[14]
Siddappa K, Ganesh, Balakrishna K M, et al. Variable energy microtron for R and D work. Radiat Phys Chem, 1998, 51(4–6): 441 doi: 10.1016/S0969-806X(97)00165-5
[15]
Stoenescu G, Iacobescu G. Fast electron irradiation effects on MOS transistor microscopic parameters—experimental data and theoretical models. J Optoelectron Adv Mater, 2005, 7: 1629
Fig. 1.  (Color online) DC characteristics of IGZO TFT. (a) Output characteristics. (b) Transfer characteristics.

Fig. 2.  (Color online) Simulated and IGZO TFT transfer characteristics at VDS = 10 V.

Fig. 3.  (Color online) Experimental setup for irradiation.

Fig. 4.  (Color online) 8 MeV source for irradiation of TFTs in Microton Centre, Mangalore University.

Fig. 5.  (Color online) Effect of irradiation on sample before and after irradiation of 1 kGy at VGS = 1, 5, 10 V.

Fig. 6.  (Color online) IDSVDS plot for before irradiation and after irradiation of 1 kGy at VGS = 10 V.

Fig. 7.  (Color online) Transfer characteristics of before, after irradiation and the drain current model of 1 kGy at VDS = 10 V.

Table 1.   Comparison of different parameter values for both simulated and IGZO TFT values.

Parameter SS (V/Decade) μsat (cm2/(V·s)) Ion/Ioff Vth (V)
Simulated value 1.40 0.976 1.4 × 104 −3.51
IGZO TFT value 1.38 0.853 1.36 × 104 −3.47
DownLoad: CSV

Table 2.   Effect of electron irradiation on different TFT parameters.

Parameter SS (V/Decade) μsat (cm2/(V·s)) Ion/Ioff Vth (V)
Before irradiation 3.058749 0.312153 4326.254 −3.8
After 1 kGy irradiation 3.511243 0.29967 6899.364 −1.4
DownLoad: CSV
[1]
Kamiya T, Nomura K, Hosono H. Present status of amorphous IGZO thin-film transistors. Sci Technol Adv Mater, 2015, 11(4): 044305
[2]
Ito M, Kon M, Miyazaki C, et al. Amorphous oxide TFT and their applications in electrophoretic displays. Phys Status Solidi, 2008, 205(8): 1885 doi: 10.1002/pssa.v205:8
[3]
Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with co-sputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91: 113505 doi: 10.1063/1.2783961
[4]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2007, 516(7): 1516
[5]
Hsieh H H, Kamiya T, Nomura K, et al. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Jpn Appl Phys Lett, 2008, 92: 133503 doi: 10.1063/1.2857463
[6]
Fung T C, Chuang C S, Chen C, et al. Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. J Appl Phys, 2009, 106: 084511 doi: 10.1063/1.3234400
[7]
Park J H, Lee S, Jeon K, et al. Density of states-based DC I–V model of amorphous gallium–indium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2009, 30(10): 1069 doi: 10.1109/LED.2009.2028042
[8]
Short K, Buren D. Printable spacecraft: flexible electronics platforms for NASA mission’s. NASA Innovative Advanced Concepts (NAIC), Phase 2 Final Report Printable Spacecraft, September 2014
[9]
Rafí J M, Campabadal F, Ohyama H, et al. 2 MeV electron irradiation effects on the electrical characteristics of metal–oxide–silicon capacitors with atomic layer deposited Al2O3, HfO2 and nanolaminated dielectrics. Solid-State Electron, 2013, 79: 65 doi: 10.1016/j.sse.2012.06.011
[10]
Indluru A, Holbert K E, Alford T L. Gamma radiation effects on indium–zinc oxide thin-film transistors. Thin Solid Films, 2013, 539: 342 doi: 10.1016/j.tsf.2013.04.148
[11]
Cramer T, Sacchetti A, Lobato M T, et al. Radiation-tolerant flexible large-area electronics based on oxide semiconductors. Adv Electron Mater, 2016, 2: 1500489 doi: 10.1002/aelm.v2.7
[12]
Liu Y, Wu W, En Y, et al. Total dose ionizing radiation effects in the indium–zinc oxide thin-film transistors. IEEE Electron Device Lett, 2014, 35(3): 369 doi: 10.1109/LED.2014.2301801
[13]
Kim H J. International collaboration for advanced AMOLED. ICAA Koranet Annual Conference, South Korea, 2010
[14]
Siddappa K, Ganesh, Balakrishna K M, et al. Variable energy microtron for R and D work. Radiat Phys Chem, 1998, 51(4–6): 441 doi: 10.1016/S0969-806X(97)00165-5
[15]
Stoenescu G, Iacobescu G. Fast electron irradiation effects on MOS transistor microscopic parameters—experimental data and theoretical models. J Optoelectron Adv Mater, 2005, 7: 1629
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4351 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 18 April 2017 Revised: 02 August 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 02 February 2018Published: 02 February 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      G K Dayananda, C Shantharama Rai, A Jayarama, Hyun Jae Kim. Simulation model for electron irradiated IGZO thin film transistors[J]. Journal of Semiconductors, 2018, 39(2): 022002. doi: 10.1088/1674-4926/39/2/022002 ****G K Dayananda, C S Rai, A Jayarama, H J Kim. Simulation model for electron irradiated IGZO thin film transistors[J]. J. Semicond., 2018, 39(2): 022002. doi: 10.1088/1674-4926/39/2/022002.
      Citation:
      G K Dayananda, C Shantharama Rai, A Jayarama, Hyun Jae Kim. Simulation model for electron irradiated IGZO thin film transistors[J]. Journal of Semiconductors, 2018, 39(2): 022002. doi: 10.1088/1674-4926/39/2/022002 ****
      G K Dayananda, C S Rai, A Jayarama, H J Kim. Simulation model for electron irradiated IGZO thin film transistors[J]. J. Semicond., 2018, 39(2): 022002. doi: 10.1088/1674-4926/39/2/022002.

      Simulation model for electron irradiated IGZO thin film transistors

      DOI: 10.1088/1674-4926/39/2/022002
      More Information
      • Corresponding author: Email: dayanand.gk@gmail.com
      • Received Date: 2017-04-18
      • Revised Date: 2017-08-02
      • Available Online: 2018-02-01
      • Published Date: 2018-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return