J. Semicond. > 2018, Volume 39 > Issue 2 > 024001

SEMICONDUCTOR DEVICES

The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

Tianxiao Fang, Bifeng Cui, Shuai Hao and Yang Wang

+ Author Affiliations

 Corresponding author: Tianxiao Fang, fangtianxiao@emails.bjut.edu.cn

DOI: 10.1088/1674-4926/39/2/024001

PDF

Turn off MathJax

Abstract: In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device.

Key words: 980 nmlasermesa sizes



[1]
Cui J J, Ning Y Q, Zhang Y, et al. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-filed distribution. Appl Opt, 2009, 48(18): 3317 doi: 10.1364/AO.48.003317
[2]
Calciati M, Tibaldi A, Bertazzi F, et al. Many-valley electron transport in AlGaAs VCSELs. Semicond Sci Technol, 2017, 32(5): 055007 doi: 10.1088/1361-6641/aa66bb
[3]
Zhao Y J, Hao Y Q, Li G J, et al. Fabrication of new structure vertical-cavity surface-emitting laser. Chin J Lasers, 2009, 36: 1946 doi: 10.3788/JCL
[4]
Islam S I, Islam A, Islam S, et al. Integrated duo wavelength VCSEL using an electrically pumped GaInAs/AlGaAs 980 nm cavity at the bottom and an pptically pumped GaInAs/AlGaInAs 1550 nm cavity on the top. Int Scholy Res Notices, 2014, 2014: 627165
[5]
Vladimirov A G, Pimenov A, Gurevich S V, et al. Cavity solitons in vertical-cavity surface-emitting lasers. Philosophical Trans Royal Soc A, 2014, 372(2027): 1
[6]
Vanzi M, Mura G, Marcello G, et al. ESD tests on 850 nm GaAs-based VCSELs. Microelectron Reliab, 2016, 64: 617 doi: 10.1016/j.microrel.2016.07.023
[7]
Shi G Z, Guan B L, Li S, et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers. Chin Phys B, 2013, 22(1): 014206 doi: 10.1088/1674-1056/22/1/014206
[8]
Yan C L, Ning Y Q, Qin L, et al. High-power vertical-cavity surface-emitting laser with an extra Au layer. IEEE Photon Technol Lett, 2005, 17: 1599 doi: 10.1109/LPT.2005.850903
[9]
Zhao Y G, Mclnerney J G. Transverse-mode control of vertical-cavity surface-emitting lasers. IEEE Quantum Electron, 1996, 32(11): 1950 doi: 10.1109/JQE.1996.541681
[10]
Choquette K D. Vertical cavity surface emitting lasers (VCSELs). Elsevier Inc, 2013
[11]
Calciati M, Tibaldi A, Bertazzi F, et al. Many-valley electron transport in AlGaAs VCSELs. Semicond Sci Technol, 2017, 32(5): 055007 doi: 10.1088/1361-6641/aa66bb
[12]
Khreis O M. Modeling and analysis of smoothly diffused vertical cavity surface emitting lasers. Comput Conden Matter, 2016, 9: 56 doi: 10.1016/j.cocom.2016.09.005
[13]
Bajaj R, Mishra H K, Goyal P, et al. Design of oxide-confined and temperature stable long wavelength vertical cavity surface emitting laser for optical interconnects. Optik-Int J Light Electron Opt, 2017, 131: 506 doi: 10.1016/j.ijleo.2016.10.129
[14]
Nakwaski W. VCSEL structures used to suppress higher-order transverse modes. Opto-Electron Rev, 2011, 19(1): 119
[15]
Zhang L, Cui B F, Gao X, et al. Temperature distribution changes of tunnel regeneration semiconductor laser caused by solder void. Journal of Beijing University of Technology, 2008(10): 1038
Fig. 1.  (Color online) The structure of traditional oxide-confined VCSEL.

Fig. 3.  (Color online) The parameter description of traditional oxide-confined VCSEL.

Fig. 2.  (Color online) Lattice temperature distribution with different mesa radius. (a) 4.5 μm. (b) 5.5 μm. (c) 6.5 μm. (d) 8.5 μm.

Fig. 4.  (Color online) The power with the variation of current in different sizes of mesa.

Fig. 5.  (Color online) The IV characteristic curve with different sizes of mesa.

Table 1.   The structure of 980 nm VCSEL.

Layer Material Group Repeat Mole fraction (x) Thickness (μm) Dopant Type CV level (1018 cm−3)
15 GaAs 0.2121 Carbon P 3.00
14 AlxGaAs 2 25 0.375 0.0790 Carbon P 2.00
13 GaAs 2 25 0.0707 Carbon P 2.00
12 AlxGaAs 0.980–0.375 0.010 Carbon P 2.00
11 AlxGaAs 0.980 0.0718 Carbon P 2.00
10 AlxGaAs 0.420 0.1073 Carbon P 2.00
9 GaAs 2 0.020 Undoped U/D
8 InxGaAs 2 0.200 0.008 Undoped U/D
7 GaAs 0.015 Undoped U/D
6 InxGaAs 0.200 0.008 Undoped U/D
5 GaAs 0.020 Undoped U/D
4 AlxGaAs 0.420 0.1073 Silicon N 2.00
3 AlAs 2 26 0.0828 Silicon N 2.00
2 GaAs 2 26 0.0707 Silicon N 2.00
1 AlxGaAs 0.499 20.0000 Silicon N 2.00
AlGaAs substrate
DownLoad: CSV
[1]
Cui J J, Ning Y Q, Zhang Y, et al. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-filed distribution. Appl Opt, 2009, 48(18): 3317 doi: 10.1364/AO.48.003317
[2]
Calciati M, Tibaldi A, Bertazzi F, et al. Many-valley electron transport in AlGaAs VCSELs. Semicond Sci Technol, 2017, 32(5): 055007 doi: 10.1088/1361-6641/aa66bb
[3]
Zhao Y J, Hao Y Q, Li G J, et al. Fabrication of new structure vertical-cavity surface-emitting laser. Chin J Lasers, 2009, 36: 1946 doi: 10.3788/JCL
[4]
Islam S I, Islam A, Islam S, et al. Integrated duo wavelength VCSEL using an electrically pumped GaInAs/AlGaAs 980 nm cavity at the bottom and an pptically pumped GaInAs/AlGaInAs 1550 nm cavity on the top. Int Scholy Res Notices, 2014, 2014: 627165
[5]
Vladimirov A G, Pimenov A, Gurevich S V, et al. Cavity solitons in vertical-cavity surface-emitting lasers. Philosophical Trans Royal Soc A, 2014, 372(2027): 1
[6]
Vanzi M, Mura G, Marcello G, et al. ESD tests on 850 nm GaAs-based VCSELs. Microelectron Reliab, 2016, 64: 617 doi: 10.1016/j.microrel.2016.07.023
[7]
Shi G Z, Guan B L, Li S, et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers. Chin Phys B, 2013, 22(1): 014206 doi: 10.1088/1674-1056/22/1/014206
[8]
Yan C L, Ning Y Q, Qin L, et al. High-power vertical-cavity surface-emitting laser with an extra Au layer. IEEE Photon Technol Lett, 2005, 17: 1599 doi: 10.1109/LPT.2005.850903
[9]
Zhao Y G, Mclnerney J G. Transverse-mode control of vertical-cavity surface-emitting lasers. IEEE Quantum Electron, 1996, 32(11): 1950 doi: 10.1109/JQE.1996.541681
[10]
Choquette K D. Vertical cavity surface emitting lasers (VCSELs). Elsevier Inc, 2013
[11]
Calciati M, Tibaldi A, Bertazzi F, et al. Many-valley electron transport in AlGaAs VCSELs. Semicond Sci Technol, 2017, 32(5): 055007 doi: 10.1088/1361-6641/aa66bb
[12]
Khreis O M. Modeling and analysis of smoothly diffused vertical cavity surface emitting lasers. Comput Conden Matter, 2016, 9: 56 doi: 10.1016/j.cocom.2016.09.005
[13]
Bajaj R, Mishra H K, Goyal P, et al. Design of oxide-confined and temperature stable long wavelength vertical cavity surface emitting laser for optical interconnects. Optik-Int J Light Electron Opt, 2017, 131: 506 doi: 10.1016/j.ijleo.2016.10.129
[14]
Nakwaski W. VCSEL structures used to suppress higher-order transverse modes. Opto-Electron Rev, 2011, 19(1): 119
[15]
Zhang L, Cui B F, Gao X, et al. Temperature distribution changes of tunnel regeneration semiconductor laser caused by solder void. Journal of Beijing University of Technology, 2008(10): 1038
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4216 Times PDF downloads: 93 Times Cited by: 0 Times

    History

    Received: 30 April 2017 Revised: 14 June 2017 Online: Corrected proof: 15 November 2017Uncorrected proof: 24 January 2018Accepted Manuscript: 02 February 2018Published: 02 February 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tianxiao Fang, Bifeng Cui, Shuai Hao, Yang Wang. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. Journal of Semiconductors, 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001 ****T X Fang, B F Cui, S Hao, Y Wang. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. J. Semicond., 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001.
      Citation:
      Tianxiao Fang, Bifeng Cui, Shuai Hao, Yang Wang. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. Journal of Semiconductors, 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001 ****
      T X Fang, B F Cui, S Hao, Y Wang. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. J. Semicond., 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001.

      The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

      DOI: 10.1088/1674-4926/39/2/024001
      Funds:

      Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

      More Information
      • Corresponding author: fangtianxiao@emails.bjut.edu.cn
      • Received Date: 2017-04-30
      • Revised Date: 2017-06-14
      • Available Online: 2017-02-01
      • Published Date: 2018-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return