Citation: |
Lei Shen, Shaoyan Di, Longxiang Yin, Yun Li, Xiaoyan Liu, Gang Du. Impact of crystal orientation and surface scattering on DG-MOSFETs in quasi-ballistic region[J]. Journal of Semiconductors, 2018, 39(7): 074002. doi: 10.1088/1674-4926/39/7/074002
****
L Shen, S Y Di, L X Yin, Y Li, X Y Liu, G Du, Impact of crystal orientation and surface scattering on DG-MOSFETs in quasi-ballistic region[J]. J. Semicond., 2018, 39(7): 074002. doi: 10.1088/1674-4926/39/7/074002.
|
Impact of crystal orientation and surface scattering on DG-MOSFETs in quasi-ballistic region
DOI: 10.1088/1674-4926/39/7/074002
More Information
-
Abstract
The characteristics of nano scale n-type double gate MOSFETs with (100) and (110) surfaces are studied using 3D full band ensemble Monte Carlo simulator. The anisotropic surface scattering mechanism is investigated. The (100) case is sensitive to the gate voltage more than the (110) case. The impact of crystal orientation and surface scattering on transport features mainly reflects in the carrier velocity distribution. The electron transport features with (100) direction are greater than that with (110) direction, but are more likely to be affected by the surface scattering. -
References
[1] Auth C, Allen C, Blattner A, et al. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, 2012: 131[2] Loubet N, Hook T, Montanini P, et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. Symposium on VLSI Technology, 2017: 230[3] Gamiz F, Donetti L, Rodriguez N. Anisotropy of electron mobility in arbitrarily oriented FinFETs. Solid State Device Research Conference, 2007: 378[4] Akarvardar K, Young C D, Baykan M O, et al. Impact of Fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities. IEEE Electron Device Lett, 2012, 33(3): 351 doi: 10.1109/LED.2011.2182603[5] Young C D, Baykan M O, Agrawal A, et al. Critical discussion on (100) and (110) orientation dependent transport: nMOS planar and FinFET. Symposium on VLSI Technology, 2011, 53(2): 18[6] Iwai H. Future of nano CMOS technology. Solid-State Electron, 2015, 112: 56 doi: 10.1016/j.sse.2015.02.005[7] Lundstrom M, Ren Z. Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans Electron Devices, 2002, 49(1): 133 doi: 10.1109/16.974760[8] Rahman A, Guo J, Datta S, et al. Theory of ballistic nanotransistors. IEEE Trans Electron Devices, 2003, 50(9): 1853 doi: 10.1109/TED.2003.815366[9] Cheng R, Yu X, Chen B, et al. Investigation of self-heating effect on ballistic transport characterization for Si FinFETs featuring ultrafast pulsed I–V technique. IEEE Trans Electron Devices, 2017, 64(3): 909 doi: 10.1109/TED.2016.2646907[10] Liu H W, Wang R S, Huang R, et al. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs. J Semicond, 2010, 31(4): 044006 doi: 10.1088/1674-4926/31/4/044006[11] Chang P, Liu X, Di S, et al. Evaluation of ballistic transport in III–V-based p-channel MOSFETs. IEEE Trans Electron Devices, 2017, 64(3): 1053[12] Yin L, Shen L, Di S, et al. Investigation of thermal effects on FinFETs in the quasi-ballistic regime. International Conference on Solid State Devices and Materials, 2017[13] Shen L, Di S, Yin L, et al. Parameter calibration of drift-diffusion model in quasi-ballisitc transport region with Monte Carlo method. Silicon Nanoelectronics Workshop, 2017[14] Du G, Zhang W, Wang J, et al. Study of 20 nm bulk FINFET by using 3D full band Monte Carlo method with effective potential quantum correction. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010: 1952[15] Rahman A, Lundstrom M S, Ghosh A W. Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers. J Appl Phys, 2005, 97(5): 053702[16] Canali C, Jacoboni C, Nava F, et al. Electron drift velocity in silicon. Phys Rev B, 1975, 12(6): 2265 doi: 10.1103/PhysRevB.12.2265[17] Grgee D, Jungemann C, Nguyen C D, et al. An accurate and efficient surface scattering model for Monte Carlo device simulation. International Conference on Solid-State and Integrated Circuits Technology, 2004 -
Proportional views