Citation: |
Bing Han, Yong-Lai Zhang. Laser fabrication of graphene-based soft robots[J]. Journal of Semiconductors, 2019, 40(12): 120401. doi: 10.1088/1674-4926/40/12/120401
****
B Han, Y L Zhang, Laser fabrication of graphene-based soft robots[J]. J. Semicond., 2019, 40(12): 120401. doi: 10.1088/1674-4926/40/12/120401.
|
Laser fabrication of graphene-based soft robots
DOI: 10.1088/1674-4926/40/12/120401
More Information
-
References
[1] Cheng H, Huang Y, Shi G, et al. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc Chem Res, 2017, 50(7), 1663 doi: 10.1021/acs.accounts.7b00131[2] Chen L, Weng M, Zhou Z, et al. Large-deformation curling actuators based on carbon nanotube composite: advanced-structure design and biomimetic application. ACS Nano, 2015, 9(12), 12189 doi: 10.1021/acsnano.5b05413[3] Hu Y, Wu G, Lan T, et al. A graphene-based bimorph structure for design of high performance photoactuators. Adv Mater, 2015, 27(47), 7867 doi: 10.1002/adma.201502777[4] Dong Y, Wang J, Guo X, et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat Commun, 2019, 10(1), 4087 doi: 10.1038/s41467-019-12044-5[5] You R, Liu Y Q, Hao Y L, et al. Laser fabrication of graphene-based flexible electronics. Adv Mater, 2019, 1901981 doi: 10.1002/adma.201901981[6] Cheng H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Ed, 2013, 52(40), 10482 doi: doi.org/10.1002/anie.201304358[7] Han B, Zhang Y L, Zhu L, et al. Plasmonic-assisted graphene oxide artificial muscles. Adv Mater, 2019, 31(5), 1806386 doi: 10.1002/adma.201806386 -
Proportional views