Citation: |
Jianxun Lu, Zhanhua Wei. The strategies for preparing blue perovskite light-emitting diodes[J]. Journal of Semiconductors, 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203
****
J X Lu, Z H Wei, The strategies for preparing blue perovskite light-emitting diodes[J]. J. Semicond., 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203.
|
The strategies for preparing blue perovskite light-emitting diodes
DOI: 10.1088/1674-4926/41/5/051203
More Information
-
Abstract
Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties, and they find many promising applications in the optoelectronic fields of solar cells, light-emitting diodes, and photodetectors. Thanks to the contributions of international researchers, significant progress has been made for perovskite light-emitting diodes (Pero-LEDs). The external quantum efficiencies (EQEs) of Pero-LEDs with emission of green, red, and near-infrared have all exceeded 20%. However, the blue Pero-LEDs still lag due to the poor film quality and deficient device structure. Herein, we summarize the strategies for preparing blue-emitting perovskites and categorize them into two: compositional engineering and size controlling of the emitting units. The advantages and disadvantages of both strategies are discussed, and a perspective of preparing high-performance blue-emitting perovskite is proposed. The challenges and future directions of blue Pero-LEDs fabrication are also discussed.-
Keywords:
- perovskite,
- blue,
- light-emitting diodes
-
References
[1] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149[2] Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222 doi: 10.1126/science.aad1818[3] Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248 doi: 10.1002/adma.201403751[4] Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699 doi: 10.1038/nphoton.2016.185[5] Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110[6] Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics, 2019, 13, 418 doi: 10.1038/s41566-019-0390-x[7] Lin K, Lu J, Xie L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3[8] Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y[9] Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633 doi: 10.1038/s41467-019-13580-w[10] Fang T, Zhang F, Yuan S, et al. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. Informat, 2019, 1, 211 doi: 10.1002/inf2.12019[11] Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br(1– x)Cl x)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119 doi: 10.1021/acsami.5b02159[12] Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095 doi: 10.1021/acs.nanolett.5b02369[13] Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567[14] Bohn B J, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 2018, 18, 5231 doi: 10.1021/acs.nanolett.8b02190[15] Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897 doi: 10.1021/acsnano.6b02683[16] Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720 doi: 10.1021/acsnano.6b05775[17] Liu Y, Cui J, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics, 2019, 13, 760 doi: 10.1038/s41566-019-0505-4[18] Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536, 312 doi: 10.1038/nature18306[19] Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557[20] Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5, eaav0693 doi: 10.1126/sciadv.aav0693[21] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404, 59 doi: 10.1038/35003535[22] Gangishetty M K, Hou S, Quan Q, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, e1706226 doi: 10.1002/adma.201706226[23] Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26, 4797 doi: 10.1002/adfm.201601054[24] Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58, 7260 doi: 10.1103/PhysRevB.58.7260[25] Todorović P, Ma D, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater, 2019, 7, 1901440 doi: 10.1002/adom.201901440[26] Jiang Y, Qin C, Cui M, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868 doi: 10.1038/s41467-019-09794-7[27] Leng M, Yang Y, Chen Z, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett, 2018, 18, 6076 doi: 10.1021/acs.nanolett.8b03090[28] Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater, 2018, 28, 1801131 doi: 10.1002/adfm.201801131[29] Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615 doi: 10.1016/j.nanoen.2018.06.008[30] Xing J, Zhao Y, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8[31] Shang Y, Li G, Liu W, et al. Quasi-2D Inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28, 1801193 doi: 10.1002/adfm.201801193[32] Yang D, Zou Y, Li P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235 doi: 10.1016/j.nanoen.2018.03.019[33] Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295 doi: 10.1039/C8NR07907B[34] Zou Y, Xu H, Li S, et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics, 2019, 6, 1728 doi: 10.1021/acsphotonics.9b00435[35] Tan Z, Luo J, Yang L, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater, 2020, 8, 1901094 doi: 10.1002/adom.201901094[36] Ren Z, Xiao X, Ma R, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339 doi: 10.1002/adfm.201905339[37] Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901 doi: 10.1021/acsami.7b07458[38] Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920 doi: 10.1002/adom.201600920[39] Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005[40] Deng W, Jin X, Lv Y, et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater, 2019, 29, 1903861 doi: 10.1002/adfm.201903861[41] Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, e1904319 doi: 10.1002/adma.201904319[42] Li G, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 2016, 28, 3528 doi: 10.1002/adma.201600064[43] Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784[44] Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28, 1704446 doi: 10.1002/adfm.201704446[45] Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83 doi: 10.1021/acs.chemmater.8b02999[46] Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655 doi: 10.1021/acsami.9b02472[47] Yang F, Chen H, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater, 2020, 30, 1908760 doi: 10.1002/adfm.201908760[48] Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ions doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 14195 doi: 10.1021/acsami.0c01074[49] Lu W, Chen C, Han D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv Opt Mater, 2016, 4, 1732 doi: 10.1002/adom.201600322[50] Zhang F, Xiao C, Li Y, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front Chem, 2018, 6, 444 doi: 10.3389/fchem.2018.00444 -
Proportional views