J. Semicond. > 2020, Volume 41 > Issue 6 > 062401

ARTICLES

A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier

Shizhe Wei1, Haifeng Wu2, , Qian Lin3 and Mingzhe Zhang1

+ Author Affiliations

 Corresponding author: Haifeng Wu, Email: abgott@126.com

DOI: 10.1088/1674-4926/41/6/062401

PDF

Turn off MathJax

Abstract: In this letter, we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier (PA) in 0.18 μm CMOS technology. By using two-stage quadruple-stacked topology and feedback technology, the proposed PA realizes an ultra-wideband CMOS PA in a small chip area. Wideband impedance matching is achieved with smaller chip dimension. The effects of feedback resistors on the RF performance are also discussed for this stacked-FET PA. The PA shows measured input return loss (< –10.8 dB) and output return loss (< –9.6 dB) in the entire bandwidth. A saturated output power of 22 dBm with maximum 20% power added efficiency (PAE) is also measured with the drain voltage at 5 V. The chip size is 0.44 mm2 including all pads.

Key words: power amplifierCMOSstackedmulti-octaveresistive matching



[1]
Jin J, Shi J, Ai B L, et al. A highly linear power amplifier for WLAN. J Semicond, 2016, 37(2), 025006 doi: 10.1088/1674-4926/37/2/025006
[2]
Gong J, Li W, Hu J T, et al. An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS. J Semicond, 2018, 39(12), 125008 doi: 10.1088/1674-4926/39/12/125008
[3]
Park J S, Wang Y J, Pellerano S, et al. A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE J Solid-State Circuits, 2018, 53(2), 340 doi: 10.1109/JSSC.2017.2760898
[4]
Wang H, Sideris C, Hajimiri A, et al. A CMOS broadband power amplifier with a transformer-based high-order output matching network. IEEE J Solid-State Circuits, 2018, 45(12), 2709 doi: 10.1109/jssc.2010.2077171
[5]
Xia J, Fang X, Boumaiza S. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microwave Wireless Compons Lett, 2018, 28(8), 711 doi: 10.1109/LMWC.2018.2843160
[6]
Ahn H T, Allstot D J. A 0.5–8.5-GHz fully differential CMOS distributed amplifier. IEEE J Solid-State Circuits, 2002, 37(8), 985 doi: 10.1109/JSSC.2002.800960
[7]
Hsu H C, Wang Z W, Ma G K. A low power CMOS full-band UWB power amplifier using wideband RLC matching method. Electron Devices and Solid-State Circuits Conf Dig Tech Papers, 2005, 233
[8]
Huang P C, Tsai Z M, Lin K Y, et al. A high-efficiency, broadband CMOS power amplifier for cognitive radio applications. Trans Microwave Theory Tech, 2010, 58(12), 3556 doi: 10.1109/TMTT.2010.2086351
[9]
Chou M L, Wang H K, Chiu H C, et al. A broadband Darlington power amplifier using 0.5 µm GaN-on-SiC HEMT process. 2016 URSI Asia-Pacific Radio Science Conference, 2016, 1947
[10]
Wu H F, Liao X J, Lin Q, et al. A compact ultrabroadband stacked traveling-wave GaN on Si power amplifier. IEEE Trans Microwave Theory Tech, 2018, 66(7), 3306 doi: 10.1109/TMTT.2018.2828434
[11]
Thome F, Leuther A, Schlechtweg M, et al. Broadband high-power W-band amplifier MMICs based on stacked-HEMT unit cells. Trans Microwave Theory Tech, 2018, 66(3), 1312 doi: 10.1109/TMTT.2017.2772809
[12]
Wu C, Lin Y, Hsiao Y, et al. Design of a 60-GHz high-output power stacked- FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. Trans Microwave Theory Tech, 2018, 66(10), 4595 doi: 10.1109/TMTT.2018.2859980
[13]
Pornpromlikit S, Jeong J, Presti C D, et al. A Watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS. IEEE Trans Microwave Theory Tech, 2010, 58(1), 57 doi: 10.1109/TMTT.2009.2036323
[14]
Razavi B. Design of analog CMOS integrated circuits. Boston: McGraw-Hill, 2001
[15]
Dabag H T, Hanafi B, Golcuk F, et al. Analysis and design of stacked-FET millimeter-wave power amplifiers. IEEE Trans Microwave Theory Tech, 2013, 61(4), 1543 doi: 10.1109/TMTT.2013.2247698
Fig. 1.  The equivalent AC circuit.

Fig. 2.  Schematic of proposed PA.

Fig. 3.  (Color online) Effects of R2 on S-parameter. (a) S11. (b) S21. (c) S22.

Fig. 4.  (Color online) Effects of R2 on output power and PAE (post-layout simulation). (a) Output power. (b) PAE

Fig. 5.  (Color online) Microphotograph of the stacked PA.

Fig. 6.  (Color online) Photograph of the test system.

Fig. 7.  (Color online) K-factor and S-parameters.

Fig. 8.  (Color online) Output power and PAE.

Table 1.   Performance of Broadband CMOS PAs.

ParameterRef. [4]Ref. [6]Ref. [7]Ref. [8]This work
Technology90 nm0.6 μm0.18 μm0.18 μm0.18 μm
Frequency (GHz)5.2–130.5–8.53.1–91–50.1–1.5
S11 (dB)< –11< –6< –9< –5< –10.8
S22 (dB)< –3.9< –9.5< –8< –4< –9.6
Gain (dB)1461015 – 2022.3 ± 1.5
OP1dB (dBm)22.662021
Power (mW)1810100126
Peak PAE (%)21.63620
Area (mm2)0.45 × 1.551.3 × 2.21.1 × 10.9 × 0.760.58 × 0.76
DownLoad: CSV

Table 2.   Power consumption of each stage.

Pin (dBm)Vds1 (V)Ids1 (mA)Vds2 (V)Ids2 (mA)
–25475107
05465106
25495105
45535101
DownLoad: CSV
[1]
Jin J, Shi J, Ai B L, et al. A highly linear power amplifier for WLAN. J Semicond, 2016, 37(2), 025006 doi: 10.1088/1674-4926/37/2/025006
[2]
Gong J, Li W, Hu J T, et al. An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS. J Semicond, 2018, 39(12), 125008 doi: 10.1088/1674-4926/39/12/125008
[3]
Park J S, Wang Y J, Pellerano S, et al. A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE J Solid-State Circuits, 2018, 53(2), 340 doi: 10.1109/JSSC.2017.2760898
[4]
Wang H, Sideris C, Hajimiri A, et al. A CMOS broadband power amplifier with a transformer-based high-order output matching network. IEEE J Solid-State Circuits, 2018, 45(12), 2709 doi: 10.1109/jssc.2010.2077171
[5]
Xia J, Fang X, Boumaiza S. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microwave Wireless Compons Lett, 2018, 28(8), 711 doi: 10.1109/LMWC.2018.2843160
[6]
Ahn H T, Allstot D J. A 0.5–8.5-GHz fully differential CMOS distributed amplifier. IEEE J Solid-State Circuits, 2002, 37(8), 985 doi: 10.1109/JSSC.2002.800960
[7]
Hsu H C, Wang Z W, Ma G K. A low power CMOS full-band UWB power amplifier using wideband RLC matching method. Electron Devices and Solid-State Circuits Conf Dig Tech Papers, 2005, 233
[8]
Huang P C, Tsai Z M, Lin K Y, et al. A high-efficiency, broadband CMOS power amplifier for cognitive radio applications. Trans Microwave Theory Tech, 2010, 58(12), 3556 doi: 10.1109/TMTT.2010.2086351
[9]
Chou M L, Wang H K, Chiu H C, et al. A broadband Darlington power amplifier using 0.5 µm GaN-on-SiC HEMT process. 2016 URSI Asia-Pacific Radio Science Conference, 2016, 1947
[10]
Wu H F, Liao X J, Lin Q, et al. A compact ultrabroadband stacked traveling-wave GaN on Si power amplifier. IEEE Trans Microwave Theory Tech, 2018, 66(7), 3306 doi: 10.1109/TMTT.2018.2828434
[11]
Thome F, Leuther A, Schlechtweg M, et al. Broadband high-power W-band amplifier MMICs based on stacked-HEMT unit cells. Trans Microwave Theory Tech, 2018, 66(3), 1312 doi: 10.1109/TMTT.2017.2772809
[12]
Wu C, Lin Y, Hsiao Y, et al. Design of a 60-GHz high-output power stacked- FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. Trans Microwave Theory Tech, 2018, 66(10), 4595 doi: 10.1109/TMTT.2018.2859980
[13]
Pornpromlikit S, Jeong J, Presti C D, et al. A Watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS. IEEE Trans Microwave Theory Tech, 2010, 58(1), 57 doi: 10.1109/TMTT.2009.2036323
[14]
Razavi B. Design of analog CMOS integrated circuits. Boston: McGraw-Hill, 2001
[15]
Dabag H T, Hanafi B, Golcuk F, et al. Analysis and design of stacked-FET millimeter-wave power amplifiers. IEEE Trans Microwave Theory Tech, 2013, 61(4), 1543 doi: 10.1109/TMTT.2013.2247698
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4645 Times PDF downloads: 86 Times Cited by: 0 Times

    History

    Received: 26 August 2019 Revised: 07 December 2019 Online: Accepted Manuscript: 17 January 2020Uncorrected proof: 19 January 2020Published: 01 June 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shizhe Wei, Haifeng Wu, Qian Lin, Mingzhe Zhang. A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier[J]. Journal of Semiconductors, 2020, 41(6): 062401. doi: 10.1088/1674-4926/41/6/062401 ****S Z Wei, H F Wu, Q Lin, M Z Zhang, A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier[J]. J. Semicond., 2020, 41(6): 062401. doi: 10.1088/1674-4926/41/6/062401.
      Citation:
      Shizhe Wei, Haifeng Wu, Qian Lin, Mingzhe Zhang. A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier[J]. Journal of Semiconductors, 2020, 41(6): 062401. doi: 10.1088/1674-4926/41/6/062401 ****
      S Z Wei, H F Wu, Q Lin, M Z Zhang, A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier[J]. J. Semicond., 2020, 41(6): 062401. doi: 10.1088/1674-4926/41/6/062401.

      A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier

      DOI: 10.1088/1674-4926/41/6/062401
      More Information
      • Corresponding author: Email: abgott@126.com
      • Received Date: 2019-08-26
      • Revised Date: 2019-12-07
      • Published Date: 2020-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return