ARTICLES

An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture

Guiping Cao and Ning Dong

+ Author Affiliations

 Corresponding author: Ning Dong, dongning@i-tek.cn

PDF

Turn off MathJax

Abstract: Oversampling sigma–delta (Σ–Δ) analog-to-digital converters (ADCs) are currently one of the most widely used architectures for high-resolution ADCs. The rapid development of integrated circuit manufacturing processes has allowed the realization of a high resolution in exchange for speed. Structurally, the Σ–Δ ADC is divided into two parts: a front-end analog modulator and a back-end digital filter. The performance of the front-end analog modulator has a marked influence on the entire Σ–Δ ADC system. In this paper, a 4-order single-loop switched-capacitor modulator with a CIFB (cascade-of-integrators feed-back) structure is proposed. Based on the chosen modulator architecture, the ASIC circuit is implemented using a chartered 0.35 μm CMOS process with a chip area of 1.72 × 0.75 mm2. The chip operates with a 3.3-V power supply and a power dissipation of 22 mW. According to the results, the performance of the designed modulator has been improved compared with a mature industrial chip and the effective number of bits (ENOB) was almost 18-bit.

Key words: sigma–delta modulatoroversamplingCIFB structureswitched-capacitor



[1]
Inose H, Inose H, Yasuda Y, et al. A telemetering system by code modulation — Δ–Σ modulation. IRE Trans Space Electron Telemetry, 1962, 8, 204 doi: 10.1109/IRET-SET.1962.5008839
[2]
Ritchie G R, Candy J, Ninke W. Interpolative digital to analog converters. IEEE Trans Commun, 1974, 22, 1797 doi: 10.1109/TCOM.1974.1092117
[3]
Candy J C. A use of limit cycle oscillations to obtain robust analog-to-digital converters. IEEE Trans Commun, 1974, 22(3), 298 doi: 10.1109/TCOM.1974.1092194
[4]
Candy J C, Wooley B, Benjamin O. A voiceband codec with digital filtering. IEEE Trans Commun, 1981, 29(6), 815 doi: 10.1109/TCOM.1981.1095061
[5]
Candy J C, Benjamin O J. The structure of quantization noise from sigma-delta modulation. IEEE Trans Commun, 1981, 29(9), 1316 doi: 10.1109/TCOM.1981.1095151
[6]
Candy J C. A use of double integration in sigma-delta modulations. IEEE Trans Commun, 1985, 33(3), 249 doi: 10.1109/TCOM.1985.1096276
[7]
Candy J C, Huynh A. Double Interpolation for digital-to-analog conversion. IEEE Trans Commun, 1986, 34(1), 77 doi: 10.1109/TCOM.1986.1096428
[8]
Hayashi T, Inabe Y, Uchimura K, et al. A multistage delta-sigma modulator without double integration loop. ISSCC Digest of Technical Papers, 1986, 182
[9]
Chen J Q, Ren J Y, Xun J, et al. An 80 dB dynamic range modulator for a GSM system. Chin J Semicond, 2007, 28(2), 294
[10]
Cao Y, Ren T L, Hong Z L, et al. A 16 bit 96 kHz chopper-stabilized sigma-delta ADC. Chin J Semicond, 2007, 28(8), 1204
[11]
Yuan J, Zhang Z F, Wu J, et al. Continuous time sigma delta ADC design and non-idealities analysis. J Semicond, 2011, 32(12), 125007 doi: 10.1088/1674-4926/32/12/125007
[12]
Li R, Li J, Yi T, et al. A 18-mW, 20-MHz bandwidth, 12-bit continuous-time modulator using a power-efficient multi-stage amplifier. J Semicond, 2012, 33(1), 015007 doi: 10.1088/1674-4926/33/1/015007
[13]
Caldwell T C, Johns D A. An 8-th order MASH delta-sigma with an OSR of 3. ESSCIRC, 2009, 476
[14]
Chiang J S, Chen H L, Chou P C. A 2.5-V 14-bit MASH sigma-delta modulator for ADSL. IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, 24
[15]
Yao L, Steyaert M, Sansen W M. Low-power low-voltage sigma-delta modulators in nanometer CMOS. Springer Science & Business Media, 2006
[16]
Chao K C, Nadeem S, Lee W L, et al. A higher order topology for interpolative modulators for oversampling A/D converters. IEEE Trans Circuits Syst, 1990, 37(3), 309 doi: 10.1109/31.52724
[17]
Cao G. Study and ASIC implementation of high-resolution sigma-delta modulator. PhD Thesis, University of Science and Technology of China, 2012
[18]
Wang F, Harjani R. Power analysis and optimal design of opamps for oversampled converters. IEEE Trans Circuits Syst II, 1999, 46, 359 doi: 10.1109/82.755407
[19]
Medeiro F, Pérez-Verdú B, de la Rosa J M, et al. Fourth-order cascade SC sigma delta modulator: a comparative study. IEEE Trans Circuits Syst I, 1998, 45(10), 1041 doi: 10.1109/81.728858
[20]
Ericson M N. High-temperature, high-resolution A/D conversion using 2nd and 4th-order sigma delta modulation in 3.3 V 0.5 µm SOS-CMOS. PhD Thesis, University of Tennessee, 2002
[21]
Geets Y, Steyaert M, Sansen W. A 2.5 M sample/s multi-bit sigma delta CMOS ADC with 95 dB SN. Digest of Technical Papers, Solid-State Circuits Conference, 2000, 336
[22]
Balmelli P, Huang Q. A 25 MS/s 14 b 200 mW Σ∆ modulator in 0.18 µm cmos. ISSCC Dig Tech Papers, 2005, 74
[23]
Brigati S, Francesconi F, Malcovati P, et al. A Fourth-order singla-bit switched capacitor sigma delta modulator for distributed sensor applications. IEEE Trans Instrum Meas, 2004, 53(2), 266 doi: 10.1109/TIM.2003.822480
[24]
Gerosa A, Neviani A. A 1.8 µW sigma delta modulator for 8-bit digitization of cardiac signals in implantable pacemakers operating down to 1.8 V. IEEE Trans Circuits Syst II, 2005, 52(2), 71 doi: 10.1109/TCSII.2004.840480
[25]
Yao L, Steyaert M, Sansen W. A 1-V, 1 MS/s, 88-dB sigma delta modulator in 0.13-µm digital CMOS technology. Symposium on VLSI Circuits Digest of Technical, 2005, 180
[26]
Chen L. High precision Σ∆ ADC. PhD Thesis, Northwestern Polytechnical University, 2006
Fig. 1.  (Color online) Noise modulation under different modulation orders.

Fig. 2.  (Color online) Relationship of the SQNR with input signal amplitude.

Fig. 3.  4-order single-loop CIFB structure.

Fig. 4.  NTF/SFT transfer functions after mapping to CIFB structure.

Fig. 5.  (Color online) Simulated SQNR under –6 dB input after mapping to CIFB structure.

Fig. 6.  SC implementation of the CIFB structure modulator.

Fig. 7.  Bandgap reference circuit.

Fig. 8.  Simulated results (bandgap voltage fluctuation with power supply and temperature).

Fig. 9.  OTA circuit.

Fig. 10.  (Color online) Frequency Response of the designed OTA.

Fig. 11.  Clocks used in the modulator.

Fig. 12.  Clock generator circuit.

Fig. 13.  Simulation results of clock generator.

Fig. 14.  Comparator and Latch incorporating a hysteresis.

Fig. 15.  (Color online) Σ–Δ modulator layout.

Fig. 16.  Σ–Δ modulator (SDM) layout architecture and chip after manufacturing.

Fig. 17.  (Color online) Test bench for the designed Σ–Δ modulator.

Fig. 18.  (Color online) Modulated bit stream output of the designed Σ–Δ modulator.

Fig. 19.  (Color online) Raw bit stream performance comparison of the designed chip with the industrial chip (CS5372).

Fig. 20.  (Color online) Performance comparison after digital filtering of the designed chip with the industrial chip (CS5372).

Table 1.   CIFB parameters calculated from NTF.

iaigibici
10.006640.000070.00531
20.0682610.000431
30.31651
40.8191
DownLoad: CSV

Table 2.   Simulation results of OTA.

DC gainPhase marginPower dissipationGBWCommon offsetSingle-side swingSlew rateEffective input noise
87.8 dB66°2.44 mW28 MHz100 nV±2.2 V5 V/μs14 nV/Hz1/2 (1 kHz)
DownLoad: CSV

Table 3.   Performance comparison between the designed chip and the industrial chip (CS5372).

PerformanceThis workCS5372
SNR (dB)93.7993.09
THD (dB)–101.64–102.22
SINAD (dB)93.13 dB92.59
ENOB (bit)15.1815.09
SFDR (dB)105.82105.09
ENOB@FS (bit)17.6517.56
DownLoad: CSV

Table 4.   Performance comparison of the Σ–Δ modulators.

ParameterENOBDORDissipation (mW)CMOS process (µm)Power supply (V)OrdersOSRQuantizer (bit)FOM-w
Geets[21]11.512.5 Msps1520.6553814.20
Balmelli[22]13.62.5 Msps2000.181.85846.44
Brigati[23]16.9400 sps500.65432011022.1
Gerosa[24]9.1256 sps0.00180.81.8316812.8
Yao[25]14.3500 ksps7.40.131.046410.73
Chen[26]12.048 ksps300.5556418.30
This work17.6512 ksps220.353.3412811.63
DownLoad: CSV
[1]
Inose H, Inose H, Yasuda Y, et al. A telemetering system by code modulation — Δ–Σ modulation. IRE Trans Space Electron Telemetry, 1962, 8, 204 doi: 10.1109/IRET-SET.1962.5008839
[2]
Ritchie G R, Candy J, Ninke W. Interpolative digital to analog converters. IEEE Trans Commun, 1974, 22, 1797 doi: 10.1109/TCOM.1974.1092117
[3]
Candy J C. A use of limit cycle oscillations to obtain robust analog-to-digital converters. IEEE Trans Commun, 1974, 22(3), 298 doi: 10.1109/TCOM.1974.1092194
[4]
Candy J C, Wooley B, Benjamin O. A voiceband codec with digital filtering. IEEE Trans Commun, 1981, 29(6), 815 doi: 10.1109/TCOM.1981.1095061
[5]
Candy J C, Benjamin O J. The structure of quantization noise from sigma-delta modulation. IEEE Trans Commun, 1981, 29(9), 1316 doi: 10.1109/TCOM.1981.1095151
[6]
Candy J C. A use of double integration in sigma-delta modulations. IEEE Trans Commun, 1985, 33(3), 249 doi: 10.1109/TCOM.1985.1096276
[7]
Candy J C, Huynh A. Double Interpolation for digital-to-analog conversion. IEEE Trans Commun, 1986, 34(1), 77 doi: 10.1109/TCOM.1986.1096428
[8]
Hayashi T, Inabe Y, Uchimura K, et al. A multistage delta-sigma modulator without double integration loop. ISSCC Digest of Technical Papers, 1986, 182
[9]
Chen J Q, Ren J Y, Xun J, et al. An 80 dB dynamic range modulator for a GSM system. Chin J Semicond, 2007, 28(2), 294
[10]
Cao Y, Ren T L, Hong Z L, et al. A 16 bit 96 kHz chopper-stabilized sigma-delta ADC. Chin J Semicond, 2007, 28(8), 1204
[11]
Yuan J, Zhang Z F, Wu J, et al. Continuous time sigma delta ADC design and non-idealities analysis. J Semicond, 2011, 32(12), 125007 doi: 10.1088/1674-4926/32/12/125007
[12]
Li R, Li J, Yi T, et al. A 18-mW, 20-MHz bandwidth, 12-bit continuous-time modulator using a power-efficient multi-stage amplifier. J Semicond, 2012, 33(1), 015007 doi: 10.1088/1674-4926/33/1/015007
[13]
Caldwell T C, Johns D A. An 8-th order MASH delta-sigma with an OSR of 3. ESSCIRC, 2009, 476
[14]
Chiang J S, Chen H L, Chou P C. A 2.5-V 14-bit MASH sigma-delta modulator for ADSL. IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, 24
[15]
Yao L, Steyaert M, Sansen W M. Low-power low-voltage sigma-delta modulators in nanometer CMOS. Springer Science & Business Media, 2006
[16]
Chao K C, Nadeem S, Lee W L, et al. A higher order topology for interpolative modulators for oversampling A/D converters. IEEE Trans Circuits Syst, 1990, 37(3), 309 doi: 10.1109/31.52724
[17]
Cao G. Study and ASIC implementation of high-resolution sigma-delta modulator. PhD Thesis, University of Science and Technology of China, 2012
[18]
Wang F, Harjani R. Power analysis and optimal design of opamps for oversampled converters. IEEE Trans Circuits Syst II, 1999, 46, 359 doi: 10.1109/82.755407
[19]
Medeiro F, Pérez-Verdú B, de la Rosa J M, et al. Fourth-order cascade SC sigma delta modulator: a comparative study. IEEE Trans Circuits Syst I, 1998, 45(10), 1041 doi: 10.1109/81.728858
[20]
Ericson M N. High-temperature, high-resolution A/D conversion using 2nd and 4th-order sigma delta modulation in 3.3 V 0.5 µm SOS-CMOS. PhD Thesis, University of Tennessee, 2002
[21]
Geets Y, Steyaert M, Sansen W. A 2.5 M sample/s multi-bit sigma delta CMOS ADC with 95 dB SN. Digest of Technical Papers, Solid-State Circuits Conference, 2000, 336
[22]
Balmelli P, Huang Q. A 25 MS/s 14 b 200 mW Σ∆ modulator in 0.18 µm cmos. ISSCC Dig Tech Papers, 2005, 74
[23]
Brigati S, Francesconi F, Malcovati P, et al. A Fourth-order singla-bit switched capacitor sigma delta modulator for distributed sensor applications. IEEE Trans Instrum Meas, 2004, 53(2), 266 doi: 10.1109/TIM.2003.822480
[24]
Gerosa A, Neviani A. A 1.8 µW sigma delta modulator for 8-bit digitization of cardiac signals in implantable pacemakers operating down to 1.8 V. IEEE Trans Circuits Syst II, 2005, 52(2), 71 doi: 10.1109/TCSII.2004.840480
[25]
Yao L, Steyaert M, Sansen W. A 1-V, 1 MS/s, 88-dB sigma delta modulator in 0.13-µm digital CMOS technology. Symposium on VLSI Circuits Digest of Technical, 2005, 180
[26]
Chen L. High precision Σ∆ ADC. PhD Thesis, Northwestern Polytechnical University, 2006
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5285 Times PDF downloads: 177 Times Cited by: 0 Times

    History

    Received: 25 October 2019 Revised: 08 December 2019 Online: Accepted Manuscript: 24 February 2020Uncorrected proof: 05 March 2020Published: 01 June 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guiping Cao, Ning Dong. An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. Journal of Semiconductors, 2020, 41(6): 062404. doi: 10.1088/1674-4926/41/6/062404 G P Cao, N Dong, An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. J. Semicond., 2020, 41(6): 062404. doi: 10.1088/1674-4926/41/6/062404.Export: BibTex EndNote
      Citation:
      Guiping Cao, Ning Dong. An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. Journal of Semiconductors, 2020, 41(6): 062404. doi: 10.1088/1674-4926/41/6/062404

      G P Cao, N Dong, An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. J. Semicond., 2020, 41(6): 062404. doi: 10.1088/1674-4926/41/6/062404.
      Export: BibTex EndNote

      An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture

      doi: 10.1088/1674-4926/41/6/062404
      More Information
      • Corresponding author: dongning@i-tek.cn
      • Received Date: 2019-10-25
      • Revised Date: 2019-12-08
      • Published Date: 2020-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return