Citation: |
Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002
****
C Li, C Chen, J Chen, T He, H W Li, Z Y Yang, L Xie, Z C Wang, K Zhang, High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. J. Semicond., 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002.
|
High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure
DOI: 10.1088/1674-4926/41/8/082002
More Information
-
Abstract
Black phosphorous (BP), an excellent two-dimensional (2D) monoelemental layered p-type semiconductor material with high carrier mobility and thickness-dependent tunable direct bandgap structure, has been widely applied in various devices. As the essential building blocks for modern electronic and optoelectronic devices, high quality PN junctions based on semiconductors have attracted widespread attention. Herein, we report a junction field-effect transistor (JFET) by integrating narrow-gap p-type BP and ultra-wide gap n-type β-Ga2O3 nanoflakes for the first time. BP and β-Ga2O3 form a vertical van der Waals (vdW) heterostructure by mechanically exfoliated method. The BP/β-Ga2O3 vdW heterostructure exhibits remarkable PN diode rectifying characteristics with a high rectifying ratio about 107 and a low reverse current around pA. More interestingly, by using the BP as the gate and β-Ga2O3 as the channel, the BP/β-Ga2O3 JFET devices demonstrate excellent n-channel JFET characteristics with the on/off ratio as high as 107, gate leakage current around as low as pA, maximum transconductance (gm) up to 25.3 µS and saturation drain current (IDSS) of 16.5 µA/µm. Moreover, it has a pinch-off voltage of –20 V and a minimum subthreshold swing of 260 mV/dec. These excellent n-channel JFET characteristics will expand the application of BP in future nanoelectronic devices. -
References
[1] Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559[2] Pearton S J, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941[3] Zhou H, Zhang J C, Zhang C F, et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40, 011803 doi: 10.1088/1674-4926/40/1/011803[4] Dong H, Xue H W, He Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 2019, 40, 011802 doi: 10.1088/1674-4926/40/1/011802[5] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001[6] Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104, 203111 doi: 10.1063/1.4879800[7] Ahn S, Ren F, Kim J, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016, 109, 062102 doi: 10.1063/1.4960651[8] Kim J, Mastro M A, Tadjer M J, et al. Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl Mater Interfaces, 2018, 10, 29724 doi: 10.1021/acsami.8b07030[9] Guo J, Wang L Y, Yu Y W, et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv Mater, 2019, 31, 1902962 doi: 10.1002/adma.201902962[10] Hajnal Z, Miró J, Kiss G, et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 1999, 86, 3792 doi: 10.1063/1.371289[11] Barman S K, Huda M N. Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface. Phys Status Solidi RRL, 2019, 13, 1800554 doi: 10.1002/pssr.201800554[12] Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x[13] Yan X D, Esqueda I S, Ma J H, et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl Phys Lett, 2018, 112, 032101 doi: 10.1063/1.5002138[14] Kim J, Kim J H. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications. ACS Appl Mater Interfaces, 2020, 12, 7310 doi: 10.1021/acsami.9b19667[15] Kim J, Mastro M A, Tadjer M J, et al. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl Mater Interfaces, 2017, 9, 21322 doi: 10.1021/acsami.7b04374[16] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35[17] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033 doi: 10.1021/nn501226z[18] Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5, 4458 doi: 10.1038/ncomms5458[19] Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001[20] Xu Y J, Shi Z, Shi X Y, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale, 2019, 11, 14491 doi: 10.1039/C9NR04348A[21] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475[22] Deng B C, Tran V, Xie Y J, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat Commun, 2017, 8, 14474 doi: 10.1038/ncomms14474[23] Xu Y J, Shi X Y, Zhang Y S, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11, 1330 doi: 10.1038/s41467-020-14902-z[24] Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 2015, 9, 247 doi: 10.1038/nphoton.2015.23[25] Chen X L, Lu X B, Deng B C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 2017, 8, 1672 doi: 10.1038/s41467-017-01978-3[26] Zhu W K, Wei X, Yan F G, et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicond, 2019, 40, 092001 doi: 10.1088/1674-4926/40/9/092001[27] Batmunkh M, Bat-Erdene M, Shapter J G. Black phosphorus: Synthesis and application for solar cells. Adv Energy Mater, 2018, 8, 1701832 doi: 10.1002/aenm.201701832[28] Yang Y, Gao J, Zhang Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater, 2016, 28, 8937 doi: 10.1002/adma.201602382[29] Muduli S K, Varrla E, Kulkarni S A, et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. J Power Sources, 2017, 371, 156 doi: 10.1016/j.jpowsour.2017.10.018[30] Ricciardulli A G, Blom P W M. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv Mater Technol, 2020, 1900972 doi: 10.1002/admt.201900972[31] Ge X X, Xia Z H, Guo S J. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater, 2019, 29, 1900318 doi: 10.1002/adfm.201900318[32] Wu G, Wu X J, Xu Y J, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 2019, 31, 1806492 doi: 10.1002/adma.201806492[33] Tao W, Kong N, Ji X Y, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev, 2019, 48, 2891 doi: 10.1039/C8CS00823J[34] Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA, 2018, 115, 501 doi: 10.1073/pnas.1714421115[35] Xu Y J, Yuan J, Zhang K, et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 2017, 27, 1702211 doi: 10.1002/adfm.201702211[36] Lv W, Fu X, Luo X, et al. Multistate logic inverter based on black phosphorus/SnSeS heterostructure. Adv Electron Mater, 2019, 5, 1800416 doi: 10.1002/aelm.201800416[37] Jeon P J, Lee Y T, Lim J Y, et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p–n diode and junction field-effect transistor. Nano Lett, 2016, 16, 1293 doi: 10.1021/acs.nanolett.5b04664[38] Lim J Y, Kim M, Jeong Y, et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater Appl, 2018, 2, 37 doi: 10.1038/s41699-018-0082-2[39] Wang J H, Liu D N, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew Chem Int Ed, 2018, 57, 2600 doi: 10.1002/anie.201710859[40] Zheng Y, Yu Z H, Ou H H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 2018, 28, 1705407 doi: 10.1002/adfm.201705407[41] He Q Y, Liu Y, Tan C L, et al. Quest for p-type two-dimensional semiconductors. ACS Nano, 2019, 13, 12294 doi: 10.1021/acsnano.9b07618[42] Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8, 8292 doi: 10.1021/nn5027388[43] Lv Q, Yan F G, Mori N, et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 2020, 30, 1910713 doi: 10.1002/adfm.201910713 -
Proportional views