J. Semicond. > 2021, Volume 42 > Issue 4 > 042302

ARTICLES

Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator

Yuhua Li1, 2, Xiang Wang3, Roy Davidson3, Brent E. Little4 and Sai Tak Chu2,

+ Author Affiliations

 Corresponding author: Sai Tak Chu, saitchu@cityu.edu.hk

DOI: 10.1088/1674-4926/42/4/042302

PDF

Turn off MathJax

Abstract: A nonlinear integrated optical platform that allows the fabrication of waveguide circuits with different material composition, and at small dimensions, offers advantages in terms of field enhancement and increased interaction length, thereby facilitating the observation of nonlinear optics effects at a much lower power level. To enhance the nonlinearity of the conventional waveguide structure, in this work, we propose and demonstrate a microstructured waveguide where silicon rich layer is embedded in the core of the conventional waveguide in order to increase its nonlinearity. By embedding a 20 nm thin film of silicon nanocrystal (Si-nc), we achieve a twofold increase of the nonlinear parameter, γ. The linear relationship between the four-wave mixing conversion efficiency and pump power reveals the negligible nonlinear absorption and small dispersion in the micro-ring resonators. This simple approach of embedding an ultra-thin Si-nc layer into conventional high-index doped silica dramatically increases its nonlinear performance, and could potentially find applications in all-optical processing functions.

Key words: four-wave mixingsilicon nanocrystalhigh-index doped silicamicro-ring resonator



[1]
Lin S Y, Schonbrun E, Crozier K. Optical manipulation with planar silicon microring resonators. Nano Lett, 2010, 10, 2408 doi: 10.1021/nl100501d
[2]
Lin Q, Zhang J, Piredda G, et al. Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett, 2007, 91, 021111 doi: 10.1063/1.2750523
[3]
Shoji Y, Ogasawara T, Kamei T, et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt Express, 2010, 18, 5668 doi: 10.1364/OE.18.005668
[4]
Ikeda K, Saperstein R E, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 2008, 16, 12987 doi: 10.1364/OE.16.012987
[5]
Guo H R, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat Photonics, 2018, 12, 330 doi: 10.1038/s41566-018-0144-1
[6]
Brasch V, Geiselmann M, Herr T, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351, 357 doi: 10.1126/science.aad4811
[7]
Karpov M, Pfeiffer M H, Guo H R, et al. Dynamics of soliton crystals in optical microresonators. Nat Phys, 2019, 15, 1071 doi: 10.1038/s41567-019-0635-0
[8]
Bao H L, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics, 2019, 13, 384 doi: 10.1038/s41566-019-0379-5
[9]
Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 2020, 11, 2568 doi: 10.1038/s41467-020-16265-x
[10]
Singh N, Raval M, Ruocco A, et al. Broadband 200-nm second-harmonic generation in silicon in the telecom band. Light Sci Appl, 2020, 9, 17 doi: 10.1038/s41377-020-0254-7
[11]
Wang F X, Wang W Q, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 2020, 14, 1900190 doi: 10.1002/lpor.201900190
[12]
Lin H T, Song Y, Huang Y Z, et al. Chalcogenide glass-on-graphene photonics. Nat Photonics, 2017, 11(12), 798 doi: 10.1038/s41566-017-0033-z
[13]
Zhao Y, Lu J, Huo Y Y, et al. Enhanced third harmonic generation from graphene embedded in dielectric resonant waveguide gratings. Opt Commun, 2019, 447, 30 doi: 10.1016/j.optcom.2019.04.087
[14]
Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 2013, 7, 597 doi: 10.1038/nphoton.2013.183
[15]
Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2008, 2, 737 doi: 10.1038/nphoton.2008.228
[16]
Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 2010, 1, 29 doi: 10.1038/ncomms1028
[17]
Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 2010, 4, 41 doi: 10.1038/nphoton.2009.236
[18]
Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 2011, 5, 618 doi: 10.1038/nphoton.2011.199
[19]
Wei P, Wang S, Little B E, et al. Analysis of a Si-nanocrystal strip-loaded waveguide for nonlinear applications. International Conference on Photonics in Switching (PS), 2016
[20]
Martínez A, Hernández S, Lebour Y, et al. Two-photon absorption in Si-nanocrystals deposited by plasma-enhanced chemical-vapor deposition. Physica E, 2009, 41, 1002 doi: 10.1016/j.physe.2008.08.023
[21]
Little B. A VLSI photonics platform. Optical Fiber Communications Conference, 2003, 444
[22]
Wu J, Yang Y, Qu Y, et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small, 2020, 16, 1906563 doi: 10.1002/smll.201906563
[23]
Sanchis P, Blasco J, Martinez A, et al. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J Lightwave Technol, 2007, 25, 1298 doi: 10.1109/JLT.2007.893909
[24]
Spano R, Daldosso N, Cazzanelli M, et al. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550 nm. Opt Express, 2009, 17, 3941 doi: 10.1364/OE.17.003941
[25]
Li Y H, Zhu K, Kang Z, et al. CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion. Photon Res, 2019, 7, 1200 doi: 10.1364/PRJ.7.001200
[26]
Rabus D G, Sada C. Sensors. Integrated Ring Resonators. Cham: Springer International Publishing, 2020, 293
[27]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15, 998 doi: 10.1109/50.588673
[28]
Absil P P, Hryniewicz J V, Little B E, et al. Wavelength conversion in GaAs micro-ring resonators. Opt Lett, 2000, 25, 554 doi: 10.1364/OL.25.000554
[29]
Little B E, Chu S T, Absil P P, et al. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol Lett, 2004, 16, 2263 doi: 10.1109/LPT.2004.834525
[30]
Ferrera M, Duchesne D, Razzari L, et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt Express, 2009, 17, 14098 doi: 10.1364/OE.17.014098
Fig. 1.  (Color online) (a) TEM image of the Si-nc layer prior to deposition of the upper high-index doped silica layer. The sample was polished to an approximate 5 nm thickness for TEM characterization. (b) Computed dispersion of 1.75 × 1.75 μm2 (w/ 20 nm Si-nc - D1) and 2.55 × 1.75 μm2 (w/ 20 nm Si-nc - D6) cross-section for high-index doped silica waveguide embedded with 20 nm Si-nc, and without Si-nc case for cross-sections of 1.75 × 1.75 μm2 (w/o Si-nc - D1) and 2.55 × 1.75 μm2 (w/o Si-nc - D6). (c, e) SEM images of the fabricated Si-nc embedded waveguides. (d, f) Simulated electric field distribution of the fundamental TE mode of (c, e).

Fig. 2.  (Color online) (a) Model of a basic add–drop single MRR[26]. (b) B versus κ for MRRs with the fixed radius of 595 μm while varying α in step of 0.02 dB/cm. (c) B versus κ with the fixed α of 0.1 dB/cm while varying the radius R.

Fig. 3.  (Color online) Optical response of TE mode from the through port and drop port of 49 GHz MRRs with (a, e) cross-section of 1.75 × 1.75 μm2 without Si-nc layer, (b, f) cross-section of 2.55 × 1.75 μm2 without Si-nc layer, (c, g) cross-section of 1.75 × 1.75 μm2 with 20 nm Si-nc, and (d, h) cross-section of 2.55 × 1.75 μm2 with 20 nm Si-nc.

Fig. 4.  (Color online) (a) Experimental setup for FWM process. (b–e) Recorded spectra from OSA of MRRs with cross-section of 1.75 × 1.75 μm2 (b, c) without Si-nc layer, and (d, e) with 20 nm Si-nc layer.

Fig. 5.  (Color online) (a) Conversion efficiency versus incident pump power for FWM in the 49 GHz MRRs for with and without Si-nc thin film cases. (b) Idler power dependence of the square of the pump power for FWM in the MRRs for with and without Si-nc thin film cases.

Table 1.   Design parameters and fabrication processes of the MRRs.

WaferStructureAnneala-Si deposition
w/o Si-nc layer2 μm n = 1.604 h/1150 °C
w/ Si-nc layer1 μm n = 1.60 + 50 nm Si-nc + RTA* @1100 °C 1 min + 1 μm n = 1.604 h/1150 °CSiH4 = 72 sccm, N2O = 0, 349 W, 1 Torr, 5 s
*RTA: Rapid thermal annealing.
DownLoad: CSV

Table 2.   Device parameters of the MRRs with a radius of 595 μm on the same mask.

No.Gap (μm)Width (μm)Structure
D11.22Add/drop
D21.32Add/drop
D31.42Add/drop
D41.52Add/drop
D51.62Add/drop
D60.83Add/drop
D71.03Add/drop
D81.23Add/drop
DownLoad: CSV

Table 3.   Measured parameters for devices without Si-nc layer.

No.Cross-section (μm2)Gap (μm)κ1, κ2α (dB/cm)Q (TE)FSRB
D11.75 × 1.751.20.10630.117.4 × 1054927.3
D21.75 × 1.751.30.08180.111.0 × 1064926.2
D31.75 × 1.751.40.06670.101.3 × 1064925.7
D41.75 × 1.751.50.05410.141.3 × 1064912.8
D51.75 × 1.751.60.04170.131.8 × 1064911.5
D62.55 × 1.750.80.10070.088.6 × 1054935.9
D72.55 × 1.751.00.06870.081.5 × 1064938.3
D82.55 × 1.751.20.05240.052.5 × 1064957.3
DownLoad: CSV

Table 4.   Measured parameters for devices with 20 nm Si-nc layer.

No.Cross-section (μm2)Gap (μm)κ1, κ2α (dB/cm)Q (TE)FSRB
D11.75 × 1.751.20.13240.154.9 × 1054930.4
D21.75 × 1.751.30.09950.206.3 × 1054928.8
D31.75 × 1.751.40.08330.197.8 × 1054930.4
D41.75 × 1.751.50.05420.327.2 × 1054910.8
D51.75 × 1.751.60.05040.278.6 × 1054913.1
D62.55 × 1.750.80.13250.184.6 × 1054927.5
D72.55 × 1.751.00.07830.159.5 × 1054940.1
D82.55 × 1.751.20.04970.161.3 × 1064928.7
DownLoad: CSV

Table 5.   Parameter comparisons of the 49 GHz MRRs for dominant TE polarization.

WaferNo.Cross-section (μm2)Insertion loss (dB/facet)(FEp)4(FEs)2(FEi)2γ (W−1m−1)
w/o Si-nc layerD11.75 × 1.754.85.6 × 1060.144
w/o Si-nc layerD62.55 × 1.755.14.6 × 1060.120
w/ 20 nm Si-nc layerD11.75 × 1.755.03.4 × 1050.366
w/ 20 nm Si-nc layerD62.55 × 1.755.44.1 × 1050.212
DownLoad: CSV
[1]
Lin S Y, Schonbrun E, Crozier K. Optical manipulation with planar silicon microring resonators. Nano Lett, 2010, 10, 2408 doi: 10.1021/nl100501d
[2]
Lin Q, Zhang J, Piredda G, et al. Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett, 2007, 91, 021111 doi: 10.1063/1.2750523
[3]
Shoji Y, Ogasawara T, Kamei T, et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt Express, 2010, 18, 5668 doi: 10.1364/OE.18.005668
[4]
Ikeda K, Saperstein R E, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 2008, 16, 12987 doi: 10.1364/OE.16.012987
[5]
Guo H R, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat Photonics, 2018, 12, 330 doi: 10.1038/s41566-018-0144-1
[6]
Brasch V, Geiselmann M, Herr T, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351, 357 doi: 10.1126/science.aad4811
[7]
Karpov M, Pfeiffer M H, Guo H R, et al. Dynamics of soliton crystals in optical microresonators. Nat Phys, 2019, 15, 1071 doi: 10.1038/s41567-019-0635-0
[8]
Bao H L, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics, 2019, 13, 384 doi: 10.1038/s41566-019-0379-5
[9]
Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 2020, 11, 2568 doi: 10.1038/s41467-020-16265-x
[10]
Singh N, Raval M, Ruocco A, et al. Broadband 200-nm second-harmonic generation in silicon in the telecom band. Light Sci Appl, 2020, 9, 17 doi: 10.1038/s41377-020-0254-7
[11]
Wang F X, Wang W Q, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 2020, 14, 1900190 doi: 10.1002/lpor.201900190
[12]
Lin H T, Song Y, Huang Y Z, et al. Chalcogenide glass-on-graphene photonics. Nat Photonics, 2017, 11(12), 798 doi: 10.1038/s41566-017-0033-z
[13]
Zhao Y, Lu J, Huo Y Y, et al. Enhanced third harmonic generation from graphene embedded in dielectric resonant waveguide gratings. Opt Commun, 2019, 447, 30 doi: 10.1016/j.optcom.2019.04.087
[14]
Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 2013, 7, 597 doi: 10.1038/nphoton.2013.183
[15]
Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2008, 2, 737 doi: 10.1038/nphoton.2008.228
[16]
Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 2010, 1, 29 doi: 10.1038/ncomms1028
[17]
Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 2010, 4, 41 doi: 10.1038/nphoton.2009.236
[18]
Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 2011, 5, 618 doi: 10.1038/nphoton.2011.199
[19]
Wei P, Wang S, Little B E, et al. Analysis of a Si-nanocrystal strip-loaded waveguide for nonlinear applications. International Conference on Photonics in Switching (PS), 2016
[20]
Martínez A, Hernández S, Lebour Y, et al. Two-photon absorption in Si-nanocrystals deposited by plasma-enhanced chemical-vapor deposition. Physica E, 2009, 41, 1002 doi: 10.1016/j.physe.2008.08.023
[21]
Little B. A VLSI photonics platform. Optical Fiber Communications Conference, 2003, 444
[22]
Wu J, Yang Y, Qu Y, et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small, 2020, 16, 1906563 doi: 10.1002/smll.201906563
[23]
Sanchis P, Blasco J, Martinez A, et al. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J Lightwave Technol, 2007, 25, 1298 doi: 10.1109/JLT.2007.893909
[24]
Spano R, Daldosso N, Cazzanelli M, et al. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550 nm. Opt Express, 2009, 17, 3941 doi: 10.1364/OE.17.003941
[25]
Li Y H, Zhu K, Kang Z, et al. CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion. Photon Res, 2019, 7, 1200 doi: 10.1364/PRJ.7.001200
[26]
Rabus D G, Sada C. Sensors. Integrated Ring Resonators. Cham: Springer International Publishing, 2020, 293
[27]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15, 998 doi: 10.1109/50.588673
[28]
Absil P P, Hryniewicz J V, Little B E, et al. Wavelength conversion in GaAs micro-ring resonators. Opt Lett, 2000, 25, 554 doi: 10.1364/OL.25.000554
[29]
Little B E, Chu S T, Absil P P, et al. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol Lett, 2004, 16, 2263 doi: 10.1109/LPT.2004.834525
[30]
Ferrera M, Duchesne D, Razzari L, et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt Express, 2009, 17, 14098 doi: 10.1364/OE.17.014098
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2764 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 13 October 2020 Revised: 13 December 2020 Online: Accepted Manuscript: 07 February 2021Uncorrected proof: 07 February 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuhua Li, Xiang Wang, Roy Davidson, Brent E. Little, Sai Tak Chu. Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. Journal of Semiconductors, 2021, 42(4): 042302. doi: 10.1088/1674-4926/42/4/042302 ****Y H Li, X Wang, R Davidson, Brent E. Little, S T Chu, Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. J. Semicond., 2021, 42(4): 042302. doi: 10.1088/1674-4926/42/4/042302.
      Citation:
      Yuhua Li, Xiang Wang, Roy Davidson, Brent E. Little, Sai Tak Chu. Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. Journal of Semiconductors, 2021, 42(4): 042302. doi: 10.1088/1674-4926/42/4/042302 ****
      Y H Li, X Wang, R Davidson, Brent E. Little, S T Chu, Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. J. Semicond., 2021, 42(4): 042302. doi: 10.1088/1674-4926/42/4/042302.

      Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator

      DOI: 10.1088/1674-4926/42/4/042302
      More Information
      • Yuhua Li:received the PhD degree in Applied Physics from City University of Hong Kong in 2020. Since December 2020 she has been with Zhejiang Sci-Tech University where she is currently a full lecturer. Her current research interests include nonlinear optics, integrated photonic device, and luminescent rare-earth ions
      • Sai Tak Chu:received the PhD degree in Electrical Engineering from the University of Waterloo in 1990. He joined the City University of Hong Kong in 2010 where he is currently an Associate Professor in the Department of Physics. His current research interests include linear and nonlinear integrated optical circuits
      • Corresponding author: saitchu@cityu.edu.hk
      • Received Date: 2020-10-13
      • Revised Date: 2020-12-13
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return