J. Semicond. > 2022, Volume 43 > Issue 11 > 112801

ARTICLES

Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates

Zhaojun Suo1, 2, Linwang Wang1, , Shushen Li1, 2 and Junwei Luo1, 2,

+ Author Affiliations

 Corresponding author: Linwang Wang, lwwang@semi.ac.cn; Junwei Luo, jwluo@semi.ac.cn

DOI: 10.1088/1674-4926/43/11/112801

PDF

Turn off MathJax

Abstract: The emerging wide bandgap semiconductor $ \beta $-Ga2O3 has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors. Deep-level defects in $ \beta $-Ga2O3 have been intensively studied towards improving device performance. Deep-level signatures E1, E2, and E3 with energy positions of 0.55–0.63, 0.74–0.81, and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated, but their atomic origins are still under debate. In this work, we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates, Ti and Fe substituting Ga on a tetrahedral site (TiGaI and FeGaI) and an octahedral site (TiGaII and FeGaII), to experimentally measured results. The first-principles approach predicted electron capture cross-sections of TiGaI and TiGaII defects are 8.56 × 10–14 and 2.97 × 10–13 cm2, in good agreement with the experimental values of E1 and E3 centers, respectively. We, therefore, confirmed that E1 and E3 centers are indeed associated with TiGaI and TiGaII defects, respectively. Whereas the predicted electron capture cross-sections of FeGa defect are two orders of magnitude larger than the experimental value of the E2, indicating E2 may have other origins like CGa and Gai, rather than common believed FeGa.

Key words: wide bandgap semiconductordefectscarrier trapelectron-phonon coupling; first-principles calculation



[1]
Pearton S J, Yang J C, Cary P H IV, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[2]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[3]
Gu Y X, Shi L, Luo J W, et al. Directly confirming the Z1/2 center as the electron trap in SiC through accessing the nonradiative recombination. Phys Status Solidi R, 2022, 16, 2100458 doi: 10.1002/pssr.202100458
[4]
Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 2011, 110, 063720 doi: 10.1063/1.3642962
[5]
Farzana E, Chaiken M F, Blue T E, et al. Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3. APL Mater, 2019, 7, 022502 doi: 10.1063/1.5054606
[6]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 2018, 123, 115702 doi: 10.1063/1.5025916
[7]
Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 2019, 7, 022510 doi: 10.1063/1.5054826
[8]
Ingebrigtsen M E, Varley J B, Kuznetsov A Y, et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 2018, 112, 042104 doi: 10.1063/1.5020134
[9]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage. Appl Phys Lett, 2018, 112, 032107 doi: 10.1063/1.5012993
[10]
Zimmermann C, Frodason Y K, Barnard A W, et al. Ti- and Fe-related charge transition levels in β-Ga2O3. Appl Phys Lett, 2020, 116, 072101 doi: 10.1063/1.5139402
[11]
Zimmermann C, Kalmann Frodason Y, Rønning V, et al. Combining steady-state photo-capacitance spectra with first-principles calculations: The case of Fe and Ti in β-Ga2O3. New J Phys, 2020, 22, 063033 doi: 10.1088/1367-2630/ab8e5b
[12]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 2018, 113, 092102 doi: 10.1063/1.5049130
[13]
Zimmermann C, Rønning V, Kalmann Frodason Y, et al. Primary intrinsic defects and their charge transition levels in β-Ga2O3. Phys Rev Mater, 2020, 4, 074605 doi: 10.1103/PhysRevMaterials.4.074605
[14]
Lee M H, Peterson R L. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater, 2019, 7, 022524 doi: 10.1063/1.5054624
[15]
Zhang Z, Farzana E, Arehart A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 2016, 108, 052105 doi: 10.1063/1.4941429
[16]
Jia W L, Fu J Y, Cao Z Y, et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J Comput Phys, 2013, 251, 102 doi: 10.1016/j.jcp.2013.05.005
[17]
Jia W L, Cao Z Y, Wang L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Comput Phys Commun, 2013, 184, 9 doi: 10.1016/j.cpc.2012.08.002
[18]
Hamann D R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B, 2013, 88, 085117 doi: 10.1103/PhysRevB.88.085117
[19]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[20]
Bhandari S, Zvanut M E, Varley J B. Optical absorption of Fe in doped Ga2O3. J Appl Phys, 2019, 126, 165703 doi: 10.1063/1.5124825
[21]
Frodason Y K, Zimmermann C, Verhoeven E F, et al. Multistability of isolated and hydrogenated Ga-O divacancies in β-Ga2O3. Phys Rev Materials, 2021, 5, 025402 doi: 10.1103/PhysRevMaterials.5.025402
[22]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[23]
Zacherle T, Schmidt P C, Martin M. Ab initio calculations on the defect structure of β-Ga2O3. Phys Rev B, 2013, 87, 235206 doi: 10.1103/PhysRevB.87.235206
[24]
Åhman J, Svensson G, Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr C, 1996, 52, 1336 doi: 10.1107/S0108270195016404
[25]
Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559
[26]
Thermochemical Data of Pure Substances. Part I + II. Von I. Barin. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York 1989. Part I: I-1 – I 87, S. 1–816; Part II: VI, S. 817–1739; Geb. DM 680.00. — ISBN 3-527-27812-5/0-89573-866-X - Maier=1990-Angewandte Chemie-Wiley Online Library, https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.19901020738
[27]
Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys, 2014, 86, 253 doi: 10.1103/RevModPhys.86.253
[28]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[29]
Suo Z J, Luo J W, Li S S, et al. Image charge interaction correction in charged-defect calculations. Phys Rev B, 2020, 102, 174110 doi: 10.1103/PhysRevB.102.174110
[30]
Xiao Y, Wang Z W, Shi L, et al. Anharmonic multi-phonon nonradiative transition: An ab initio calculation approach. Sci China Phys Mech Astron, 2020, 63, 277312 doi: 10.1007/s11433-020-1550-4
[31]
Shi L, Wang L W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys Rev Lett, 2012, 109, 245501 doi: 10.1103/PhysRevLett.109.245501
[32]
Shi L, Xu K, Wang L W. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms. Phys Rev B, 2015, 91, 205315 doi: 10.1103/PhysRevB.91.205315
[33]
Wang L W. Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors. J Semicond, 2019, 40, 091101 doi: 10.1088/1674-4926/40/9/091101
[34]
Huang K. On the applicability of adiabatic approximation in multiphonon recombination theory. J Semicond, 2019, 40, 090102 doi: 10.1088/1674-4926/40/9/090102
[35]
Zhang Y. Applications of Huang-Rhys theory in semiconductor optical spectroscopy. J Semicond, 2019, 40, 091102 doi: 10.1088/1674-4926/40/9/091102
[36]
Huang K, Rhys A. Theory of light absorption and non-radiative transitions in F-centres. Proc R Soc Lond A, 1950, 204, 406 doi: 10.1098/rspa.1950.0184
[37]
Yamaguchi K. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 2004, 131, 739 doi: 10.1016/j.ssc.2004.07.030
[38]
Mastro M A, Kuramata A, Calkins J, et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol, 2017, 6, P356 doi: 10.1149/2.0031707jss
[39]
Alkauskas A, Yan Q M, van de Walle C G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B, 2014, 90, 075202 doi: 10.1103/PhysRevB.90.075202
[40]
Ahrens L H. The use of ionization potentials Part 1. Ionic radii of the elements. Geochim Cosmochim Acta, 1952, 2, 155 doi: 10.1016/0016-7037(52)90004-5
[41]
Zhang J Y, Shi J L, Qi D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 2020, 8, 020906 doi: 10.1063/1.5142999
[42]
Lany S. Defect phase diagram for doping of Ga2O3. APL Mater, 2018, 6, 046103 doi: 10.1063/1.5019938
Fig. 1.  (Color online) The partial charge density of the defect states of (a) TiGaI (substitute on the tetrahedral site) and (b) TiGaII (substitute on the octahedral site) defects in $ \beta $-Ga2O3.

Fig. 2.  (Color online) The defect transition levels of TiGa and FeGa in $ \beta $-Ga2O3 predicted by the first-principles calculations compared with the defect signatures E1, E2, E3 observed in DLTS measurements[4]. All energy levels are referenced to the CBM, which is 4.9 eV above the VBM and gives rise to $ \beta $-Ga2O3 a bandgap of 4.9 eV.

Fig. 3.  (Color online) First-principles-calculated σn as a function of the transition level εi/f for TiGa and FeGa at 300 K. The vertical arrows pointed out the σn using the calculated transition levels εi/f in Table 3. The energy is referenced to the CBM which is 0 eV.

Fig. 4.  (Color online) Items in |VC|2 for TiGa and FeGa defects. Ph-DOS as a function of phonon frequency for the supercell containing (a) TiGa and (b) FeGa. The coupling constant |VC|2 as a function of phonon frequency in the electron-phonon coupling with (c) TiGaI, (d) TiGaII, (e) FeGaI, and (f) FeGaII.

Fig. 5.  (Color online) The formation energy of TiGa and FeGa defects as a function of Fermi level under (a) O-poor conditions and (b) O-rich conditions. The Fermi energy is referenced to CBM which is set to 0 eV.

Fig. 6.  (Color online) Schematic diagram for σn(εi/f) of E2 candidates with proper reorganization energy λ. εi/f is referenced to CBM which is 0 eV at the right of the horizontal axis. The experimental defect level of E2 is 0.74 eV[4] below the CBM, shown as the vertical dotted line. The horizontal dotted lines indicate the minimum and maximum experimental σn ((0.3–3) × 10–15 cm2[4]) of E2. For the candidates, the downward “parabola” is intrinsic and the maximum σn remains still (see the black curve which is for FeGaII from Fig. 3), while the reorganization energy can be adjusted through shifting the “parabola” curve left (increasing λ) and right (decreasing λ). Meanwhile, σn of the blue and red curves at 0.74 eV should be within the experimental range, σn of E2, to give the reorganization energy at ~1.4 eV (left shifting) and ~0.1 eV (right shifting), respectively.

Table 1.   Compilation of energy levels (below the CBM and unit in eV) and electron capture cross-sections of three significant defect traps in $ \beta $-Ga2O3 obtained from different DLTS measurements.

SignatureE1E2E3Reference
Level (eV)0.550.741.04Ref. [4]
0.630.811.03Ref. [5]
0.801.10Ref. [6]
$ {\sigma }_{n} $ (cm2)(0.3–3) × 10–14(0.3–3) × 10–15(0.6–6) × 10–13Ref. [4]
(0.3–5) × 10–13(0.2–1.2) × 10–152 × 10–14–1 × 10–12Ref. [7]
2.7 × 10–136 × 10–151 × 10–13Ref. [5]
DownLoad: CSV

Table 2.   Lattice parameters ($a$, b, c, and $ \beta $), bandgap $ {E}_{\mathrm{g}\mathrm{a}\mathrm{p}} $, and formation energy $ \mathrm{\Delta }{H}_{\mathrm{f}} $ of $ \beta $-Ga2O3 obtained from our calculations, HSE06 results reported in the literature, and experimental measurements (Expt.).

ParameterThis workHSE06Expt.
$ a $ (Å)12.2012.23a12.214d
$ b $ (Å)3.033.03a3.037d
$ c $ (Å)5.785.79a5.798d
$ \beta $ (deg)103.8103.9b103.8d
$ {E}_{\mathrm{g}\mathrm{a}\mathrm{p}} $ (eV)4.94.9a4.9e
$ \mathrm{\Delta }{H}_{\mathrm{f}}(\beta $-$ \mathrm{G}{\mathrm{a}}_{2}{\mathrm{O}}_{3}) $ (eV)–12.7–10.3c–11.3f
a Ref. [21]; b Ref. [22]; c Ref. [23] ; d Ref. [24] ; e Ref. [25]; f Ref. [26].
DownLoad: CSV

Table 3.   First-principles calculated results of TiGa and FeGa defects in $ \beta $-Ga2O3. The transition levels $ {\varepsilon }_{i/f} $ and the configuration difference $ \mathrm{\Delta }Q $ are in comparison with those reported in the literature. Reorganization energies $ \lambda $, electron-phonon coupling constants $ {\left|{V}_{\mathrm{C}}\right|}^{2} $, and electron capture cross-sections $ \sigma_{n} $ of TiGa and FeGa are included.

ParameterDefectTiGaITiGaIIFeGaIFeGaII
${\varepsilon }_{i/f}$ (eV)Cal.(+/0) 0.59(+/0) 1.08(0/–) 0.61(0/–) 0.74
Refs. [10, 11]0.601.130.620.72
$ \mathrm{\Delta }Q $ (amu1/2/Å)Cal.2.061.421.611.32
Refs. [10, 11]~2.01.351.631.22
$ \lambda $ (eV)$ {E}_{ji}-{E}_{ii} $1.060.810.760.70
$ {\left|{V}_{\mathrm{C}}\right|}^{2} $ (eV2)Cal. 300 K0.580.560.430.48
$ {\sigma }_{n} $ (cm2)Cal. 300 K8.56 × 10–142.97 × 10–134.23 × 10–136.42 × 10–13
DownLoad: CSV
[1]
Pearton S J, Yang J C, Cary P H IV, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[2]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[3]
Gu Y X, Shi L, Luo J W, et al. Directly confirming the Z1/2 center as the electron trap in SiC through accessing the nonradiative recombination. Phys Status Solidi R, 2022, 16, 2100458 doi: 10.1002/pssr.202100458
[4]
Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 2011, 110, 063720 doi: 10.1063/1.3642962
[5]
Farzana E, Chaiken M F, Blue T E, et al. Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3. APL Mater, 2019, 7, 022502 doi: 10.1063/1.5054606
[6]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 2018, 123, 115702 doi: 10.1063/1.5025916
[7]
Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 2019, 7, 022510 doi: 10.1063/1.5054826
[8]
Ingebrigtsen M E, Varley J B, Kuznetsov A Y, et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 2018, 112, 042104 doi: 10.1063/1.5020134
[9]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage. Appl Phys Lett, 2018, 112, 032107 doi: 10.1063/1.5012993
[10]
Zimmermann C, Frodason Y K, Barnard A W, et al. Ti- and Fe-related charge transition levels in β-Ga2O3. Appl Phys Lett, 2020, 116, 072101 doi: 10.1063/1.5139402
[11]
Zimmermann C, Kalmann Frodason Y, Rønning V, et al. Combining steady-state photo-capacitance spectra with first-principles calculations: The case of Fe and Ti in β-Ga2O3. New J Phys, 2020, 22, 063033 doi: 10.1088/1367-2630/ab8e5b
[12]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 2018, 113, 092102 doi: 10.1063/1.5049130
[13]
Zimmermann C, Rønning V, Kalmann Frodason Y, et al. Primary intrinsic defects and their charge transition levels in β-Ga2O3. Phys Rev Mater, 2020, 4, 074605 doi: 10.1103/PhysRevMaterials.4.074605
[14]
Lee M H, Peterson R L. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater, 2019, 7, 022524 doi: 10.1063/1.5054624
[15]
Zhang Z, Farzana E, Arehart A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 2016, 108, 052105 doi: 10.1063/1.4941429
[16]
Jia W L, Fu J Y, Cao Z Y, et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J Comput Phys, 2013, 251, 102 doi: 10.1016/j.jcp.2013.05.005
[17]
Jia W L, Cao Z Y, Wang L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Comput Phys Commun, 2013, 184, 9 doi: 10.1016/j.cpc.2012.08.002
[18]
Hamann D R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B, 2013, 88, 085117 doi: 10.1103/PhysRevB.88.085117
[19]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[20]
Bhandari S, Zvanut M E, Varley J B. Optical absorption of Fe in doped Ga2O3. J Appl Phys, 2019, 126, 165703 doi: 10.1063/1.5124825
[21]
Frodason Y K, Zimmermann C, Verhoeven E F, et al. Multistability of isolated and hydrogenated Ga-O divacancies in β-Ga2O3. Phys Rev Materials, 2021, 5, 025402 doi: 10.1103/PhysRevMaterials.5.025402
[22]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[23]
Zacherle T, Schmidt P C, Martin M. Ab initio calculations on the defect structure of β-Ga2O3. Phys Rev B, 2013, 87, 235206 doi: 10.1103/PhysRevB.87.235206
[24]
Åhman J, Svensson G, Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr C, 1996, 52, 1336 doi: 10.1107/S0108270195016404
[25]
Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559
[26]
Thermochemical Data of Pure Substances. Part I + II. Von I. Barin. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York 1989. Part I: I-1 – I 87, S. 1–816; Part II: VI, S. 817–1739; Geb. DM 680.00. — ISBN 3-527-27812-5/0-89573-866-X - Maier=1990-Angewandte Chemie-Wiley Online Library, https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.19901020738
[27]
Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys, 2014, 86, 253 doi: 10.1103/RevModPhys.86.253
[28]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[29]
Suo Z J, Luo J W, Li S S, et al. Image charge interaction correction in charged-defect calculations. Phys Rev B, 2020, 102, 174110 doi: 10.1103/PhysRevB.102.174110
[30]
Xiao Y, Wang Z W, Shi L, et al. Anharmonic multi-phonon nonradiative transition: An ab initio calculation approach. Sci China Phys Mech Astron, 2020, 63, 277312 doi: 10.1007/s11433-020-1550-4
[31]
Shi L, Wang L W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys Rev Lett, 2012, 109, 245501 doi: 10.1103/PhysRevLett.109.245501
[32]
Shi L, Xu K, Wang L W. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms. Phys Rev B, 2015, 91, 205315 doi: 10.1103/PhysRevB.91.205315
[33]
Wang L W. Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors. J Semicond, 2019, 40, 091101 doi: 10.1088/1674-4926/40/9/091101
[34]
Huang K. On the applicability of adiabatic approximation in multiphonon recombination theory. J Semicond, 2019, 40, 090102 doi: 10.1088/1674-4926/40/9/090102
[35]
Zhang Y. Applications of Huang-Rhys theory in semiconductor optical spectroscopy. J Semicond, 2019, 40, 091102 doi: 10.1088/1674-4926/40/9/091102
[36]
Huang K, Rhys A. Theory of light absorption and non-radiative transitions in F-centres. Proc R Soc Lond A, 1950, 204, 406 doi: 10.1098/rspa.1950.0184
[37]
Yamaguchi K. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 2004, 131, 739 doi: 10.1016/j.ssc.2004.07.030
[38]
Mastro M A, Kuramata A, Calkins J, et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol, 2017, 6, P356 doi: 10.1149/2.0031707jss
[39]
Alkauskas A, Yan Q M, van de Walle C G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B, 2014, 90, 075202 doi: 10.1103/PhysRevB.90.075202
[40]
Ahrens L H. The use of ionization potentials Part 1. Ionic radii of the elements. Geochim Cosmochim Acta, 1952, 2, 155 doi: 10.1016/0016-7037(52)90004-5
[41]
Zhang J Y, Shi J L, Qi D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 2020, 8, 020906 doi: 10.1063/1.5142999
[42]
Lany S. Defect phase diagram for doping of Ga2O3. APL Mater, 2018, 6, 046103 doi: 10.1063/1.5019938
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1119 Times PDF downloads: 126 Times Cited by: 0 Times

    History

    Received: 27 April 2022 Revised: 29 May 2022 Online: Accepted Manuscript: 03 August 2022Uncorrected proof: 05 August 2022Published: 01 November 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates[J]. Journal of Semiconductors, 2022, 43(11): 112801. doi: 10.1088/1674-4926/43/11/112801 ****Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. 2022: Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates. Journal of Semiconductors, 43(11): 112801. doi: 10.1088/1674-4926/43/11/112801
      Citation:
      Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates[J]. Journal of Semiconductors, 2022, 43(11): 112801. doi: 10.1088/1674-4926/43/11/112801 ****
      Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. 2022: Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates. Journal of Semiconductors, 43(11): 112801. doi: 10.1088/1674-4926/43/11/112801

      Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates

      DOI: 10.1088/1674-4926/43/11/112801
      More Information
      • Zhaojun Suo:is a Ph.D. candidate at the Institute of Semiconductors CAS, under the supervision of Professor Junwei Luo. Her research focuses on semiconductor defect calculation and related methods, and laser-induced phase transition
      • Linwang Wang:got his Ph.D. from Cornell University. After postdoctoral work at Cornell University and National Renewable Energy Laboratory, he worked at National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory. He is a chief scientist at the Institute of Semiconductors CAS. His research focuses on the development of first-principles methods and software packages in semiconductor materials, new energy materials, or related devices
      • Junwei Luo:received his Ph.D. from the Institute of Semiconductors CAS in 2007. He was then appointed as a postdoc fellow, scientist, and senior scientist at the U.S. DOE's National Renewable Energy Laboratory (NREL). He returned to the Institute of Semiconductors as a professor in 2014. He currently focuses on semiconductor physics and silicon-based light emitting materials
      • Corresponding author: lwwang@semi.ac.cnjwluo@semi.ac.cn
      • Received Date: 2022-04-27
      • Revised Date: 2022-05-29
      • Available Online: 2022-08-03

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return