J. Semicond. > 2022, Volume 43 > Issue 3 > 031401

REVIEWS

A review on SRAM-based computing in-memory: Circuits, functions, and applications

Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao and Junning Chen

+ Author Affiliations

 Corresponding author: Xiulong Wu, xiulong@ahu.edu.cn

DOI: 10.1088/1674-4926/43/3/031401

PDF

Turn off MathJax

Abstract: Artificial intelligence (AI) processes data-centric applications with minimal effort. However, it poses new challenges to system design in terms of computational speed and energy efficiency. The traditional von Neumann architecture cannot meet the requirements of heavily data-centric applications due to the separation of computation and storage. The emergence of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architecture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art technology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and application. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.

Key words: static random-access memory (SRAM)artificial intelligence (AI)von Neumann bottleneckcomputing in-memory (CIM)convolutional neural network (CNN)



[1]
Si X, Khwa W S, Chen J J, et al. A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge processors. IEEE Trans Circuits Syst I, 2019, 66, 4172 doi: 10.1109/TCSI.2019.2928043
[2]
Khwa W S, Chen J J, Li J F, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors. 2018 IEEE International Solid-State Circuits Conference, 2018, 496
[3]
Jaiswal A, Chakraborty I, Agrawal A, et al. 8T SRAM cell as a multibit dot-product engine for beyond von Neumann computing. IEEE Trans Very Large Scale Integr VLSI Syst, 2019, 27, 2556 doi: 10.1109/TVLSI.2019.2929245
[4]
Lu L, Yoo T, Le V L, et al. A 0.506-pJ 16-kb 8T SRAM with vertical read wordlines and selective dual split power lines. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 28, 1345 doi: 10.1109/TVLSI.2019.2956232
[5]
Lin Z T, Zhan H L, Li X, et al. In-memory computing with double word lines and three read Ports for four operands. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 28, 1316 doi: 10.1109/TVLSI.2020.2976099
[6]
Srinivasa S, Chen W H, Tu Y N, et al. Monolithic-3D integration augmented design techniques for computing in SRAMs. 2019 IEEE International Symposium on Circuits and Systems, 2019, 1
[7]
Zeng J M, Zhang Z, Chen R H, et al. DM-IMCA: A dual-mode in-memory computing architecture for general purpose processing. IEICE Electron Express, 2020, 17, 20200005 doi: 10.1587/elex.17.20200005
[8]
Ali M, Agrawal A, Roy K. RAMANN: in-SRAM differentiable memory computations for memory-augmented neural networks. Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, 2020, 61
[9]
Agrawal A, Jaiswal A, Roy D, et al. Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays. IEEE Trans Circuits Syst I, 2019, 66, 3064 doi: 10.1109/TCSI.2019.2907488
[10]
Biswas A, Chandrakasan A P. CONV-SRAM: An energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks. IEEE J Solid State Circuits, 2019, 54, 217 doi: 10.1109/JSSC.2018.2880918
[11]
Lin Z T, Zhu Z Y, Zhan H L, et al. Two-direction in-memory computing based on 10T SRAM with horizontal and vertical decoupled read Ports. IEEE J Solid State Circuits, 2021, 56, 2832 doi: 10.1109/JSSC.2021.3061260
[12]
Wang J C, Wang X W, Eckert C, et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing. IEEE J Solid State Circuits, 2020, 55, 76 doi: 10.1109/JSSC.2019.2939682
[13]
Wang J C, Wang X W, Eckert C, et al. A compute SRAM with bit-serial integer/floating-point operations for programmable in-memory vector acceleration. 2019 IEEE International Solid-State Circuits Conference, 2019, 224
[14]
Jiang H W, Peng X C, Huang S S, et al. CIMAT: a transpose SRAM-based compute-in-memory architecture for deep neural network on-chip training. Proceedings of the International Symposium on Memory Systems, 2019, 490
[15]
Zhang J T, Wang Z, Verma N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J Solid State Circuits, 2017, 52, 915 doi: 10.1109/JSSC.2016.2642198
[16]
Zhang J T, Wang Z, Verma N. A machine-learning classifier implemented in a standard 6T SRAM array. 2016 IEEE Symposium on VLSI Circuits, 2016, 1
[17]
Jiang Z W, Yin S H, Seok M, et al. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks. 2018 IEEE Symp VLSI Technol, 2018, 173
[18]
Agrawal A, Jaiswal A, Lee C, et al. X-SRAM: Enabling in-memory Boolean computations in CMOS static random access memories. IEEE Trans Circuits Syst I, 2018, 65, 4219 doi: 10.1109/TCSI.2018.2848999
[19]
Jeloka S, Akesh N B, Sylvester D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory. IEEE J Solid State Circuits, 2016, 51, 1009 doi: 10.1109/JSSC.2016.2515510
[20]
Dong Q, Jeloka S, Saligane M, et al. A 4 2T SRAM for searching and in-memory computing with 0.3-V VDDmin. IEEE J Solid State Circuits, 2018, 53, 1006 doi: 10.1109/JSSC.2017.2776309
[21]
Rajput A K, Pattanaik M. Implementation of Boolean and arithmetic functions with 8T SRAM cell for in-memory computation. 2020 International Conference for Emerging Technology, 2020, 1
[22]
Jaiswal A, Agrawal A, Ali M F, et al. I-SRAM: Interleaved wordlines for vector Boolean operations using SRAMs. IEEE Trans Circuits Syst I, 2020, 67, 4651 doi: 10.1109/TCSI.2020.3005783
[23]
Surana N, Lavania M, Barma A, et al. Robust and high-performance 12-T interlocked SRAM for in-memory computing. 2020 Design, Automation & Test in Europe Conference & Exhibition, 2020, 1323
[24]
Simon W A, Qureshi Y M, Rios M, et al. BLADE: an in-cache computing architecture for edge devices. IEEE Trans Comput, 2020, 69, 1349 doi: 10.1109/TC.2020.2972528
[25]
Chen J, Zhao W F, Ha Y J. Area-efficient distributed arithmetic optimization via heuristic decomposition and in-memroy computing. 2019 IEEE 13th International Conference on ASIC, 2019, 1
[26]
Lee K, Jeong J, Cheon S, et al. Bit parallel 6T SRAM in-memory computing with reconfigurable bit-precision. 2020 57th ACM/IEEE Design Automation Conference, 2020, 1
[27]
Simon W, Galicia J, Levisse A, et al. A fast, reliable and wide-voltage-range in-memory computing architecture. Proceedings of the 56th Annual Design Automation Conference, 2019, 1
[28]
Chen H C, Li J F, Hsu C L, et al. Configurable 8T SRAM for enbling in-memory computing. 2019 2nd International Conference on Communication Engineering and Technology, 2019, 139
[29]
Gupta N, Makosiej A, Vladimirescu A, et al. 1.56GHz/0.9V energy-efficient reconfigurable CAM/SRAM using 6T-CMOS bitcell. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, 316
[30]
Sun X Y, Liu R, Peng X C, et al. Computing-in-memory with SRAM and RRAM for binary neural networks. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, 2018, 1
[31]
Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: in-memory-computing SRAM macro based on capacitive-coupling computing. IEEE Solid State Circuits Lett, 2019, 2, 131 doi: 10.1109/LSSC.2019.2934831
[32]
Si X, Chen J J, Tu Y N, et al. A twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI edge processors. IEEE J Solid State Circuits, 2020, 55, 189 doi: 10.1109/JSSC.2019.2952773
[33]
Chiu Y C, Zhang Z X, Chen J J, et al. A 4-kb 1-to-8-bit configurable 6T SRAM-based computation-in-memory unit-macro for CNN-based AI edge processors. IEEE J Solid State Circuits, 2020, 55, 2790 doi: 10.1109/JSSC.2020.3005754
[34]
Chen Z Y, Yu Z H, Jin Q, et al. CAP-RAM: A charge-domain in-memory computing 6T-SRAM for accurate and precision-programmable CNN inference. IEEE J Solid State Circuits, 2021, 56, 1924 doi: 10.1109/JSSC.2021.3056447
[35]
Kang M G, Gonugondla S K, Patil A, et al. A multi-functional in-memory inference processor using a standard 6T SRAM array. IEEE J Solid State Circuits, 2018, 53, 642 doi: 10.1109/JSSC.2017.2782087
[36]
Kang M, Gonugondla S K, Keel M, et al. An energy-efficient memory-based high-throughput VLSI architecture for convolutional networks. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, 2015, 1037
[37]
Dong Q, Sinangil M E, Erbagci B, et al. A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS for machine-learning applications. 2020 IEEE International Solid-State Circuits Conference, 2020, 242
[38]
Sinangil M E, Erbagci B, Naous R, et al. A 7-nm compute-in-memory SRAM macro supporting multi-bit input, weight and output and achieving 351 TOPS/W and 372.4 GOPS. IEEE J Solid State Circuits, 2021, 56, 188 doi: 10.1109/JSSC.2020.3031290
[39]
Kang M G, Gonugondla S, Patil A, et al. A 481pJ/decision 3.4M decision/s multifunctional deep In-memory inference processor using standard 6T sram array. arXiv: 1610.07501, 2016
[40]
Kang M G, Gonugondla S K, Shanbhag N R. A 19.4 nJ/decision 364K decisions/s in-memory random forest classifier in 6T SRAM array. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, 263
[41]
Chang J, Chen Y H, Chan G, et al. A 5nm 135Mb SRAM in EUV and high-mobility-channel FinFET technology with metal coupling and charge-sharing write-assist circuitry schemes for high-density and low-VMIN applications. 2020 IEEE International Solid-State Circuits Conference, 2020, 238
[42]
Si X, Tu Y N, Huang W H, et al. A 28nm 64Kb 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips. 2020 IEEE International Solid-State Circuits Conference, 2020, 246
[43]
Su J W, Si X, Chou Y C, et al. A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. 2020 IEEE International Solid-State Circuits Conference, 2020, 240
[44]
Ali M, Jaiswal A, Kodge S, et al. IMAC: in-memory multi-bit multiplication and ACcumulation in 6T SRAM array. IEEE Trans Circuits Syst I, 2020, 67, 2521 doi: 10.1109/TCSI.2020.2981901
[45]
Gonugondla S K, Kang M G, Shanbhag N. A 42pJ/decision 3.12TOPS/W robust in-memory machine learning classifier with on-chip training. 2018 IEEE International Solid-State Circuits Conference, 2018, 490
[46]
Huang S S, Jiang H W, Peng X C, et al. XOR-CIM: compute-in-memory SRAM architecture with embedded XOR encryption. Proceedings of the 39th International Conference on Computer-Aided Design, 2020, 1
[47]
Kim H, Chen Q, Kim B. A 16K SRAM-based mixed-signal in-memory computing macro featuring voltage-mode accumulator and row-by-row ADC. 2019 IEEE Asian Solid-State Circuits Conference, 2019, 35
[48]
Jain S, Lin L Y, Alioto M. Broad-purpose in-memory computing for signal monitoring and machine learning workloads. IEEE Solid State Circuits Lett, 2020, 3, 394 doi: 10.1109/LSSC.2020.3024838
[49]
Bose S K, Mohan V, Basu A. A 75kb SRAM in 65nm CMOS for in-memory computing based neuromorphic image denoising. 2020 IEEE International Symposium on Circuits and Systems, 2020, 1
[50]
Kang M G, Keel M S, Shanbhag N R, et al. An energy-efficient VLSI architecture for pattern recognition via deep embedding of computation in SRAM. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, 8326
[51]
Gong M X, Cao N Y, Chang M Y, et al. A 65nm thermometer-encoded time/charge-based compute-in-memory neural network accelerator at 0.735pJ/MAC and 0.41pJ/update. IEEE Trans Circuits Syst II, 2021, 68, 1408 doi: 10.1109/TCSII.2020.3027801
[52]
Lee E, Han T, Seo D, et al. A charge-domain scalable-weight in-memory computing macro with dual-SRAM architecture for precision-scalable DNN accelerators. IEEE Trans Circuits Syst I, 2021, 68, 3305 doi: 10.1109/TCSI.2021.3080042
[53]
Kim J, Koo J, Kim T, et al. Area-efficient and variation-tolerant in-memory BNN computing using 6T SRAM array. 2019 Symposium on VLSI Circuits, 2019, C118
[54]
Noel J P, Pezzin M, Gauchi R, et al. A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications. IEEE Solid State Circuits Lett, 2020, 3, 286 doi: 10.1109/LSSC.2020.3010377
[55]
Jiang H W, Peng X C, Huang S S, et al. CIMAT: A compute-in-memory architecture for on-chip training based on transpose SRAM arrays. IEEE Trans Comput, 2020, 69, 944
[56]
Biswas A, Chandrakasan A P. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. 2018 IEEE International Solid-State Circuits Conference, 2018, 488
[57]
Nguyen V T, Kim J S, Lee J W. 10T SRAM computing-in-memory macros for binary and multibit MAC operation of DNN edge processors. IEEE Access, 2021, 9, 71262 doi: 10.1109/ACCESS.2021.3079425
[58]
Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: an in-memory-computing SRAM macro based on robust capacitive coupling computing mechanism. IEEE J Solid State Circuits, 2020, 55, 1888 doi: 10.1109/JSSC.2020.2992886
[59]
Jia H Y, Ozatay M, Tang Y Q, et al. A programmable neural-network inference accelerator based on scalable in-memory computing. 2021 IEEE International Solid-State Circuits Conference, 2021, 236
[60]
Jia H Y, Valavi H, Tang Y Q, et al. A programmable heterogeneous microprocessor based on bit-scalable in-memory computing. IEEE J Solid State Circuits, 2020, 55, 2609 doi: 10.1109/JSSC.2020.2987714
[61]
Valavi H, Ramadge P J, Nestler E, et al. A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement. 2018 IEEE Symposium on VLSI Circuits, 2018, 141
[62]
Su J W, Chou Y C, Liu R H, et al. A 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision for AI edge chips. 2021 IEEE International Solid- State Circuits Conference, 2021, 250
[63]
Khaddam-Aljameh R, Francese P A, Benini L, et al. An SRAM-based multibit in-memory matrix-vector multiplier with a precision that scales linearly in area, time, and power. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 29, 372 doi: 10.1109/TVLSI.2020.3037871
[64]
Zhang J, Lin Z T, Wu X L, et al. An 8T SRAM array with configurable word lines for in-memory computing operation. Electronics, 2021, 10, 300 doi: 10.3390/electronics10030300
[65]
Nasrin S, Ramakrishna S, Tulabandhula T, et al. Supported-BinaryNet: Bitcell array-based weight supports for dynamic accuracy-energy trade-offs in SRAM-based binarized neural network. 2020 IEEE International Symposium on Circuits and Systems, 2020, 1
[66]
Gonugondla S K, Kang M G, Shanbhag N R. A variation-tolerant in-memory machine learning classifier via on-chip training. IEEE J Solid State Circuits, 2018, 53, 3163 doi: 10.1109/JSSC.2018.2867275
[67]
Wang B, Nguyen T Q, Do A T, et al. Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement. IEEE Trans Circuits Syst I, 2015, 62, 441 doi: 10.1109/TCSI.2014.2360760
[68]
Xue C X, Zhao W C, Yang T H, et al. A 28-nm 320-kb TCAM macro using split-controlled single-load 14T cell and triple-margin voltage sense amplifier. IEEE J Solid State Circuits, 2019, 54, 2743 doi: 10.1109/JSSC.2019.2915577
[69]
Jiang H W, Liu R, Yu S M. 8T XNOR-SRAM based parallel compute-in-memory for deep neural network accelerator. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, 2020, 257
[70]
Kang M G, Shanbhag N R. In-memory computing architectures for sparse distributed memory. IEEE Trans Biomed Circuits Syst, 2016, 10, 855 doi: 10.1109/TBCAS.2016.2545402
[71]
Jain S, Lin L Y, Alioto M. ±CIM SRAM for signed in-memory broad-purpose computing from DSP to neural processing. IEEE J Solid State Circuits, 2021, 56, 2981 doi: 10.1109/JSSC.2021.3092759
[72]
Yue J S, Feng X Y, He Y F, et al. A 2.75-to-75.9TOPS/W computing-in-memory NN processor supporting set-associate block-wise zero skipping and Ping-pong CIM with simultaneous computation and weight updating. 2021 IEEE International Solid- State Circuits Conference, 2021, 238
[73]
Yang X X, Zhu K R, Tang X Y, et al. An in-memory-computing charge-domain ternary CNN classifier. 2021 IEEE Custom Integrated Circuits Conference, 2021, 1
[74]
LeCun Y. Deep learning hardware: Past, present, and future. 2019 IEEE International Solid-State Circuits Conference, 2019, 12
[75]
Chih Y D, Lee P H, Fujiwara H, et al. 16.4 an 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22nm for machine-learning edge applications. 2021 IEEE International Solid-State Circuits Conference, 2021, 252
[76]
Sie S H, Lee J L, Chen Y R, et al. MARS: multi-macro architecture SRAM CIM-based accelerator with co-designed compressed neural networks. IEEE Trans Comput Aided Des Integr Circuits Syst, 2021, in press doi: 10.1109/TCAD.2021.3082107
[77]
Agrawal A, Kosta A, Kodge S, et al. CASH-RAM: Enabling in-memory computations for edge inference using charge accumulation and sharing in standard 8T-SRAM arrays. IEEE J Emerg Sel Top Circuits Syst, 2020, 10, 295 doi: 10.1109/JETCAS.2020.3014250
[78]
Yue J S, Yuan Z, Feng X Y, et al. A 65nm computing-in-memory-based CNN processor with 2.9-to-35.8TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse. 2020 IEEE International Solid-State Circuits Conference, 2020, 234
[79]
Lin Z T, Zhan H L, Chen Z W, et al. Cascade current mirror to improve linearity and consistency in SRAM in-memory computing. IEEE J Solid State Circuits, 2021, 56, 2550 doi: 10.1109/JSSC.2021.3063719
[80]
Lin Z T, Fang Y Q, Peng C Y, et al. Current mirror-based compensation circuit for multi-row read in-memory computing. Electron Lett, 2019, 55, 1176 doi: 10.1049/el.2019.2415
[81]
Kim Y, Kim H, Park J, et al. Mapping binary resnets on computing-in-memory hardware with low-bit ADCs. 2021 Design, Automation & Test in Europe Conference & Exhibition, 2021, 856
Fig. 1.  (Color online) Overall framework of static random-access memory (SRAM)-based computing in-memory (CIM) for the review: (a) various functions implemented in CIM, (b) operation functions realizable with CIM, and (c) application scenarios of CIM.

Fig. 2.  (Color online) (a) Standard 6T SRAM cell, (b) dual-Split 6T SRAM cell, and (c) 4+2T SRAM cell.

Fig. 3.  (Color online) SRAM cells with separated read and write: (a) standard 8T SRAM bit-cell, (b) 7T SRAM cell, (c) 9T SRAM cell, and (d) 10T SRAM cell.

Fig. 4.  (Color online) SRAM cells based on capacitive coupling: (a) C3SRAM bitcell and (b) M-BC bitcell.

Fig. 5.  (Color online) (a) Transposable bitcell contains two pairs of access transistors and (b) separated read–write transposable bit cell. (c) Schematic of the transposable 10T bit bitcell.

Fig. 6.  (Color online) Compact coupling structure: (a) 12T cell and (b) two-way transpose multibitcell.

Fig. 7.  (Color online) (a) Asymmetric differential sense amplifier (SA), (b) flash ADC, and (c) successive approximation ADC.

Fig. 8.  (Color online) (a) Weighted array with different capacitor sizes and (b) multi-period weighting technique using capacitors of the same size.

Fig. 9.  (Color online) Schematic of the column-wise GBL_DAC circuit: (a) Circuit of the constant current source, (b) two-stage MUX, and (c) waveform of the column-wise GBL_DAC circuit. (d) Schematic and waveform of the pulse height modulation circuit.

Fig. 10.  (Color online) Redundant reference column technology.

Fig. 11.  (Color online) (a) In-/near-memory computing peripherals and (b) a bit-tree adder.

Fig. 12.  (Color online) Signed 4-b × 8-b least significant bit (LSB) multiplier: (a) timing diagram and (b) circuit schematic.

Fig. 13.  (Color online) Boolean operation: (a) Boolean logical operations using an SRAM array, (b) histogram of AND and NOR operation voltages, and (c) schematic of the 8T-SRAM for implementing the IMP and XOR operations.

Fig. 14.  (Color online) Column-wise BCAM: (a) search example in 3D-CAM and (b) 4+2T. Row-wise TCAM: (c) organization based on 10T and (d) organization based on 6T.

Fig. 15.  (Color online) Schematic and truth table of the binary dot product: (a) 6T-SRAM binary dot product and (b) 8T-SRAM binary dot product. (c) Ternary dot product: operation of ternary multiplication and XNOR value mapping table.

Fig. 16.  (Color online) Row of 9T SRAM cells for calculating the Hamming distance.

Fig. 17.  (Color online) (a) Precharge weighting technology, (b) pulse width weighting, (c) pulse height weighting, and (d) pulse number weighting.

Fig. 18.  (Color online) (a) 8T-SRAM memory array for computing dot products with 4-bit weight precision and (b) Twin-8T cell.

Fig. 19.  (Color online) (a) Schematic of SAD circuit and (b) sequence diagram.

Fig. 20.  (Color online) Implementation of (a) CNN and (b) AES on multiple SRAM arrays.

Fig. 21.  (Color online) Application in the k-NN algorithm.

Fig. 22.  (Color online) Application in classifier algorithms.

Fig. 23.  (Color online) Read disturb issue.

Fig. 24.  (Color online) (a) Single row activation during normal SRAM read operation, (b) multirow read and nonlinearity during CIM, and (c) inconsistent CIM calculation.

Fig. 25.  (Color online) Approach of mapping from the common operator set to the actual circuits.

Fig. 26.  (Color online) Architecture of the bidirectional CIM system, including a reusable and reconfigurable module.

Fig. 27.  (Color online) Multithreaded CIM macro based on a pipeline processor.

Table 1.   Static random-access memory (SRAM) bitcells in CIM.

ParameterStructure of the 6T cellCell structure with additional devices
Standard 6TDual-split 6T4+2TRead and write separatingCapacitive couplingTransposableCompact coupling
Ref.
[19]
Refs.
[1, 2]
Ref.
[20]
Ref.
[18]
Ref.
[67]
Ref.
[57]
Refs.
[31, 58]
Refs.
[59, 60, 61]
Refs.
[12, 13]
Refs.
[14, 55]
Ref.
[11]
Ref.
[17]
Ref.
[43]
Cell type6T6T6T8T9T10T8T1C10T1C8T8T10T12TTWT-MC
Process technology28-nm FDSOI65 nm55-nm DDC45 nm65 nm28 nm65 nm65 nm28 nm7 nm28 nm65 nm28 nm
Added circuitNoNoTwo read
ports
One read
port
One read
port
Two read
ports
Two transistors
one cap
Four transistors
one cap
Two read
ports
One read
port
Two read
ports
Pull-up/
down
circuits
Multiply
cell
Read write disturbYesYesNoNoNoNoNoNoNoNoNoNoYes
Area efficiencyHighHighHighMed.Med.Med.LowLowMed.HighLowLowLow
TOPS/mm2NA33.13NANANA17020.20.627.3NANA5.461NA
TOPS/WNA30.49–
55.8
1/1/5b1
41.4
1/1/1b1
NANA1002
1/1/1b1
671.5
1/1/5b1
192–
400
1–8b
0.56/5.27
Arbitrary
6.02
8/1/
11b1
66.7
1/1/1b1
403
1/1/
3.46b1
7.2–61.1
2,4,8/4,
8/10,12,
16,20b1
1Input precesion/Weight precesion/Output precesion. TWT-MC: Two-way transpose multibit accumulation; DDC: deeply depleted channel; FDSOI: full depleted silicon on insulator
DownLoad: CSV

Table 2.   Summary of chip parameters and performance of in-memory Boolean logic and CAM

ParameterRef. [19]Ref. [28]Ref. [20]Ref. [29]Ref. [5]Ref. [68]Ref. [11]
Technology28-nm
FDSOI
180 nm55-nm
DDC
28-nm
FDSOI
65 nm28 nm28 nm
Cell type6T8T4+2T6T8T14T10T
Array size64×648×8128×128128×64128×1281024×32064×64
Supply voltage (V)11.20.80.91.20.90.9
CAMFreq.
(MHz)
370 (1 V)NA270 (0.8 V)1560 (0.9 V)
8.90 (0.38 V)
813
(1.2 V)
1330
(0.9 V)
262 (0.9 V)256 (0.9 V)
Energy
(fJ/bit)
0.6
(1 V)
NA0.45
(0.8 V)
0.13 (0.9 V)0.85
(1.2 V)
0.422
(0.9 V)
1.025 (0.9 V)1.02 (0.9 V)
0.635 (0.7 V)0.632 (0.7 V)
LogicFreq.
(MHz)
NANA230 (0.8 V)NA793 (1.2 V)NA~300(0.9 V)
Energy
(fJ/bit)
NANA24.1 (0.8 V)NA~31 (1.2 V)NA~15 (0.9 V)
~22.5 (1 V)~12.5 (0.8 V)
16.6 (0.8 V)~10.5 (0.7 V)
Search mode11221212
FunctionSRAM/
CAM/Logic
SRAM/ TCAM/ Left Shift/ Right/ShiftSRAM/
CAM/Logic
BCAM/SRAM/
Pseudo-TCAM
SRAM/
CAM/
Logic
SRAM/
TCAM
SRAM/CAM/
Logic/Matrix transpose
1Row-wise search. 2Column-wise search. DDC, deeply depleted channel; FDSOI, full depleted silicon on insulator.
DownLoad: CSV

Table 3.   Summary of chip parameters and performance of single- and multibit operations.

ParameterRefs. [1, 2]Ref. [10]Refs. [15, 16]Ref. [32]Ref. [31]Ref. [44]Ref. [33]Refs. [24, 37]Ref. [34]
Tchnology65-nm CMOS65-nm CMOS130-nm CMOS55-nm CMOS65-nm CMOS65-nm TSMC55-nm CMOS7-nm FinFET65nm
Cell structureDCS 6T10T6TTwin-8T8T1C6T6T8T6T
Array size 4 Kb16 Kb16 Kb64×60 b2 KB64 Kb4 Kb4 Kb64 Kb
Chip area (μm2)NA6.3×1042.67×1054.69×1048.1×104NA5.94×1063.2×1031.75×105
Input precision (bit)1651, 2, 4151, 2, 7, 844
Weight precision (bit)1112, 5151, 2, 841, 2, 3
4, 5, 8
Output precision (bit)16NA3, 5, 75NA3, 7, 10, 194NA
Computing mechanismAnalogDigital+
Analog
Digital+
Analog
AnalogAnalogAnalogDigital+
Analog
AnalogAnalog
ModelXNORNN/MBNNCNNClassifyCNNCNNVGG
LeNet-5
CNNVGG-9 NNCNN
Energy efficiency
(TOPS/W)
30.49–55.840.3 (1 V)
51.3 (0.8 V)
NA18.37–
72.03
671.5NA0.6–40.2351
(0.8 V)
49.4
(Input:
4b Weight:1b)
Throughput (GOPS)278.28 (1 V)
1 (0.4 V)
NA21.2~
67.5
1638NA5.14-329.14372.4(0.8 V)573.4
(Input:
4b Weight:2b)
Accu-racyMNIST96.5%
(XNORNN)
95.1%
(MBNN)
98%(0.8 V)
98.3%(1 V)
90%90.02%–
99.52%
98.30%99%98.56%–
99.59%
98.51%–
99.99%
98.80%
CIFAR 10NANANA85.56%~
90.42%
85.50%88.83%85.97%-91.93%22.89%-96.76%89.00%
DownLoad: CSV
[1]
Si X, Khwa W S, Chen J J, et al. A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge processors. IEEE Trans Circuits Syst I, 2019, 66, 4172 doi: 10.1109/TCSI.2019.2928043
[2]
Khwa W S, Chen J J, Li J F, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors. 2018 IEEE International Solid-State Circuits Conference, 2018, 496
[3]
Jaiswal A, Chakraborty I, Agrawal A, et al. 8T SRAM cell as a multibit dot-product engine for beyond von Neumann computing. IEEE Trans Very Large Scale Integr VLSI Syst, 2019, 27, 2556 doi: 10.1109/TVLSI.2019.2929245
[4]
Lu L, Yoo T, Le V L, et al. A 0.506-pJ 16-kb 8T SRAM with vertical read wordlines and selective dual split power lines. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 28, 1345 doi: 10.1109/TVLSI.2019.2956232
[5]
Lin Z T, Zhan H L, Li X, et al. In-memory computing with double word lines and three read Ports for four operands. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 28, 1316 doi: 10.1109/TVLSI.2020.2976099
[6]
Srinivasa S, Chen W H, Tu Y N, et al. Monolithic-3D integration augmented design techniques for computing in SRAMs. 2019 IEEE International Symposium on Circuits and Systems, 2019, 1
[7]
Zeng J M, Zhang Z, Chen R H, et al. DM-IMCA: A dual-mode in-memory computing architecture for general purpose processing. IEICE Electron Express, 2020, 17, 20200005 doi: 10.1587/elex.17.20200005
[8]
Ali M, Agrawal A, Roy K. RAMANN: in-SRAM differentiable memory computations for memory-augmented neural networks. Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, 2020, 61
[9]
Agrawal A, Jaiswal A, Roy D, et al. Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays. IEEE Trans Circuits Syst I, 2019, 66, 3064 doi: 10.1109/TCSI.2019.2907488
[10]
Biswas A, Chandrakasan A P. CONV-SRAM: An energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks. IEEE J Solid State Circuits, 2019, 54, 217 doi: 10.1109/JSSC.2018.2880918
[11]
Lin Z T, Zhu Z Y, Zhan H L, et al. Two-direction in-memory computing based on 10T SRAM with horizontal and vertical decoupled read Ports. IEEE J Solid State Circuits, 2021, 56, 2832 doi: 10.1109/JSSC.2021.3061260
[12]
Wang J C, Wang X W, Eckert C, et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing. IEEE J Solid State Circuits, 2020, 55, 76 doi: 10.1109/JSSC.2019.2939682
[13]
Wang J C, Wang X W, Eckert C, et al. A compute SRAM with bit-serial integer/floating-point operations for programmable in-memory vector acceleration. 2019 IEEE International Solid-State Circuits Conference, 2019, 224
[14]
Jiang H W, Peng X C, Huang S S, et al. CIMAT: a transpose SRAM-based compute-in-memory architecture for deep neural network on-chip training. Proceedings of the International Symposium on Memory Systems, 2019, 490
[15]
Zhang J T, Wang Z, Verma N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J Solid State Circuits, 2017, 52, 915 doi: 10.1109/JSSC.2016.2642198
[16]
Zhang J T, Wang Z, Verma N. A machine-learning classifier implemented in a standard 6T SRAM array. 2016 IEEE Symposium on VLSI Circuits, 2016, 1
[17]
Jiang Z W, Yin S H, Seok M, et al. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks. 2018 IEEE Symp VLSI Technol, 2018, 173
[18]
Agrawal A, Jaiswal A, Lee C, et al. X-SRAM: Enabling in-memory Boolean computations in CMOS static random access memories. IEEE Trans Circuits Syst I, 2018, 65, 4219 doi: 10.1109/TCSI.2018.2848999
[19]
Jeloka S, Akesh N B, Sylvester D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory. IEEE J Solid State Circuits, 2016, 51, 1009 doi: 10.1109/JSSC.2016.2515510
[20]
Dong Q, Jeloka S, Saligane M, et al. A 4 2T SRAM for searching and in-memory computing with 0.3-V VDDmin. IEEE J Solid State Circuits, 2018, 53, 1006 doi: 10.1109/JSSC.2017.2776309
[21]
Rajput A K, Pattanaik M. Implementation of Boolean and arithmetic functions with 8T SRAM cell for in-memory computation. 2020 International Conference for Emerging Technology, 2020, 1
[22]
Jaiswal A, Agrawal A, Ali M F, et al. I-SRAM: Interleaved wordlines for vector Boolean operations using SRAMs. IEEE Trans Circuits Syst I, 2020, 67, 4651 doi: 10.1109/TCSI.2020.3005783
[23]
Surana N, Lavania M, Barma A, et al. Robust and high-performance 12-T interlocked SRAM for in-memory computing. 2020 Design, Automation & Test in Europe Conference & Exhibition, 2020, 1323
[24]
Simon W A, Qureshi Y M, Rios M, et al. BLADE: an in-cache computing architecture for edge devices. IEEE Trans Comput, 2020, 69, 1349 doi: 10.1109/TC.2020.2972528
[25]
Chen J, Zhao W F, Ha Y J. Area-efficient distributed arithmetic optimization via heuristic decomposition and in-memroy computing. 2019 IEEE 13th International Conference on ASIC, 2019, 1
[26]
Lee K, Jeong J, Cheon S, et al. Bit parallel 6T SRAM in-memory computing with reconfigurable bit-precision. 2020 57th ACM/IEEE Design Automation Conference, 2020, 1
[27]
Simon W, Galicia J, Levisse A, et al. A fast, reliable and wide-voltage-range in-memory computing architecture. Proceedings of the 56th Annual Design Automation Conference, 2019, 1
[28]
Chen H C, Li J F, Hsu C L, et al. Configurable 8T SRAM for enbling in-memory computing. 2019 2nd International Conference on Communication Engineering and Technology, 2019, 139
[29]
Gupta N, Makosiej A, Vladimirescu A, et al. 1.56GHz/0.9V energy-efficient reconfigurable CAM/SRAM using 6T-CMOS bitcell. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, 316
[30]
Sun X Y, Liu R, Peng X C, et al. Computing-in-memory with SRAM and RRAM for binary neural networks. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, 2018, 1
[31]
Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: in-memory-computing SRAM macro based on capacitive-coupling computing. IEEE Solid State Circuits Lett, 2019, 2, 131 doi: 10.1109/LSSC.2019.2934831
[32]
Si X, Chen J J, Tu Y N, et al. A twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI edge processors. IEEE J Solid State Circuits, 2020, 55, 189 doi: 10.1109/JSSC.2019.2952773
[33]
Chiu Y C, Zhang Z X, Chen J J, et al. A 4-kb 1-to-8-bit configurable 6T SRAM-based computation-in-memory unit-macro for CNN-based AI edge processors. IEEE J Solid State Circuits, 2020, 55, 2790 doi: 10.1109/JSSC.2020.3005754
[34]
Chen Z Y, Yu Z H, Jin Q, et al. CAP-RAM: A charge-domain in-memory computing 6T-SRAM for accurate and precision-programmable CNN inference. IEEE J Solid State Circuits, 2021, 56, 1924 doi: 10.1109/JSSC.2021.3056447
[35]
Kang M G, Gonugondla S K, Patil A, et al. A multi-functional in-memory inference processor using a standard 6T SRAM array. IEEE J Solid State Circuits, 2018, 53, 642 doi: 10.1109/JSSC.2017.2782087
[36]
Kang M, Gonugondla S K, Keel M, et al. An energy-efficient memory-based high-throughput VLSI architecture for convolutional networks. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, 2015, 1037
[37]
Dong Q, Sinangil M E, Erbagci B, et al. A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS for machine-learning applications. 2020 IEEE International Solid-State Circuits Conference, 2020, 242
[38]
Sinangil M E, Erbagci B, Naous R, et al. A 7-nm compute-in-memory SRAM macro supporting multi-bit input, weight and output and achieving 351 TOPS/W and 372.4 GOPS. IEEE J Solid State Circuits, 2021, 56, 188 doi: 10.1109/JSSC.2020.3031290
[39]
Kang M G, Gonugondla S, Patil A, et al. A 481pJ/decision 3.4M decision/s multifunctional deep In-memory inference processor using standard 6T sram array. arXiv: 1610.07501, 2016
[40]
Kang M G, Gonugondla S K, Shanbhag N R. A 19.4 nJ/decision 364K decisions/s in-memory random forest classifier in 6T SRAM array. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, 263
[41]
Chang J, Chen Y H, Chan G, et al. A 5nm 135Mb SRAM in EUV and high-mobility-channel FinFET technology with metal coupling and charge-sharing write-assist circuitry schemes for high-density and low-VMIN applications. 2020 IEEE International Solid-State Circuits Conference, 2020, 238
[42]
Si X, Tu Y N, Huang W H, et al. A 28nm 64Kb 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips. 2020 IEEE International Solid-State Circuits Conference, 2020, 246
[43]
Su J W, Si X, Chou Y C, et al. A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. 2020 IEEE International Solid-State Circuits Conference, 2020, 240
[44]
Ali M, Jaiswal A, Kodge S, et al. IMAC: in-memory multi-bit multiplication and ACcumulation in 6T SRAM array. IEEE Trans Circuits Syst I, 2020, 67, 2521 doi: 10.1109/TCSI.2020.2981901
[45]
Gonugondla S K, Kang M G, Shanbhag N. A 42pJ/decision 3.12TOPS/W robust in-memory machine learning classifier with on-chip training. 2018 IEEE International Solid-State Circuits Conference, 2018, 490
[46]
Huang S S, Jiang H W, Peng X C, et al. XOR-CIM: compute-in-memory SRAM architecture with embedded XOR encryption. Proceedings of the 39th International Conference on Computer-Aided Design, 2020, 1
[47]
Kim H, Chen Q, Kim B. A 16K SRAM-based mixed-signal in-memory computing macro featuring voltage-mode accumulator and row-by-row ADC. 2019 IEEE Asian Solid-State Circuits Conference, 2019, 35
[48]
Jain S, Lin L Y, Alioto M. Broad-purpose in-memory computing for signal monitoring and machine learning workloads. IEEE Solid State Circuits Lett, 2020, 3, 394 doi: 10.1109/LSSC.2020.3024838
[49]
Bose S K, Mohan V, Basu A. A 75kb SRAM in 65nm CMOS for in-memory computing based neuromorphic image denoising. 2020 IEEE International Symposium on Circuits and Systems, 2020, 1
[50]
Kang M G, Keel M S, Shanbhag N R, et al. An energy-efficient VLSI architecture for pattern recognition via deep embedding of computation in SRAM. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, 8326
[51]
Gong M X, Cao N Y, Chang M Y, et al. A 65nm thermometer-encoded time/charge-based compute-in-memory neural network accelerator at 0.735pJ/MAC and 0.41pJ/update. IEEE Trans Circuits Syst II, 2021, 68, 1408 doi: 10.1109/TCSII.2020.3027801
[52]
Lee E, Han T, Seo D, et al. A charge-domain scalable-weight in-memory computing macro with dual-SRAM architecture for precision-scalable DNN accelerators. IEEE Trans Circuits Syst I, 2021, 68, 3305 doi: 10.1109/TCSI.2021.3080042
[53]
Kim J, Koo J, Kim T, et al. Area-efficient and variation-tolerant in-memory BNN computing using 6T SRAM array. 2019 Symposium on VLSI Circuits, 2019, C118
[54]
Noel J P, Pezzin M, Gauchi R, et al. A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications. IEEE Solid State Circuits Lett, 2020, 3, 286 doi: 10.1109/LSSC.2020.3010377
[55]
Jiang H W, Peng X C, Huang S S, et al. CIMAT: A compute-in-memory architecture for on-chip training based on transpose SRAM arrays. IEEE Trans Comput, 2020, 69, 944
[56]
Biswas A, Chandrakasan A P. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. 2018 IEEE International Solid-State Circuits Conference, 2018, 488
[57]
Nguyen V T, Kim J S, Lee J W. 10T SRAM computing-in-memory macros for binary and multibit MAC operation of DNN edge processors. IEEE Access, 2021, 9, 71262 doi: 10.1109/ACCESS.2021.3079425
[58]
Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: an in-memory-computing SRAM macro based on robust capacitive coupling computing mechanism. IEEE J Solid State Circuits, 2020, 55, 1888 doi: 10.1109/JSSC.2020.2992886
[59]
Jia H Y, Ozatay M, Tang Y Q, et al. A programmable neural-network inference accelerator based on scalable in-memory computing. 2021 IEEE International Solid-State Circuits Conference, 2021, 236
[60]
Jia H Y, Valavi H, Tang Y Q, et al. A programmable heterogeneous microprocessor based on bit-scalable in-memory computing. IEEE J Solid State Circuits, 2020, 55, 2609 doi: 10.1109/JSSC.2020.2987714
[61]
Valavi H, Ramadge P J, Nestler E, et al. A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement. 2018 IEEE Symposium on VLSI Circuits, 2018, 141
[62]
Su J W, Chou Y C, Liu R H, et al. A 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision for AI edge chips. 2021 IEEE International Solid- State Circuits Conference, 2021, 250
[63]
Khaddam-Aljameh R, Francese P A, Benini L, et al. An SRAM-based multibit in-memory matrix-vector multiplier with a precision that scales linearly in area, time, and power. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 29, 372 doi: 10.1109/TVLSI.2020.3037871
[64]
Zhang J, Lin Z T, Wu X L, et al. An 8T SRAM array with configurable word lines for in-memory computing operation. Electronics, 2021, 10, 300 doi: 10.3390/electronics10030300
[65]
Nasrin S, Ramakrishna S, Tulabandhula T, et al. Supported-BinaryNet: Bitcell array-based weight supports for dynamic accuracy-energy trade-offs in SRAM-based binarized neural network. 2020 IEEE International Symposium on Circuits and Systems, 2020, 1
[66]
Gonugondla S K, Kang M G, Shanbhag N R. A variation-tolerant in-memory machine learning classifier via on-chip training. IEEE J Solid State Circuits, 2018, 53, 3163 doi: 10.1109/JSSC.2018.2867275
[67]
Wang B, Nguyen T Q, Do A T, et al. Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement. IEEE Trans Circuits Syst I, 2015, 62, 441 doi: 10.1109/TCSI.2014.2360760
[68]
Xue C X, Zhao W C, Yang T H, et al. A 28-nm 320-kb TCAM macro using split-controlled single-load 14T cell and triple-margin voltage sense amplifier. IEEE J Solid State Circuits, 2019, 54, 2743 doi: 10.1109/JSSC.2019.2915577
[69]
Jiang H W, Liu R, Yu S M. 8T XNOR-SRAM based parallel compute-in-memory for deep neural network accelerator. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, 2020, 257
[70]
Kang M G, Shanbhag N R. In-memory computing architectures for sparse distributed memory. IEEE Trans Biomed Circuits Syst, 2016, 10, 855 doi: 10.1109/TBCAS.2016.2545402
[71]
Jain S, Lin L Y, Alioto M. ±CIM SRAM for signed in-memory broad-purpose computing from DSP to neural processing. IEEE J Solid State Circuits, 2021, 56, 2981 doi: 10.1109/JSSC.2021.3092759
[72]
Yue J S, Feng X Y, He Y F, et al. A 2.75-to-75.9TOPS/W computing-in-memory NN processor supporting set-associate block-wise zero skipping and Ping-pong CIM with simultaneous computation and weight updating. 2021 IEEE International Solid- State Circuits Conference, 2021, 238
[73]
Yang X X, Zhu K R, Tang X Y, et al. An in-memory-computing charge-domain ternary CNN classifier. 2021 IEEE Custom Integrated Circuits Conference, 2021, 1
[74]
LeCun Y. Deep learning hardware: Past, present, and future. 2019 IEEE International Solid-State Circuits Conference, 2019, 12
[75]
Chih Y D, Lee P H, Fujiwara H, et al. 16.4 an 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22nm for machine-learning edge applications. 2021 IEEE International Solid-State Circuits Conference, 2021, 252
[76]
Sie S H, Lee J L, Chen Y R, et al. MARS: multi-macro architecture SRAM CIM-based accelerator with co-designed compressed neural networks. IEEE Trans Comput Aided Des Integr Circuits Syst, 2021, in press doi: 10.1109/TCAD.2021.3082107
[77]
Agrawal A, Kosta A, Kodge S, et al. CASH-RAM: Enabling in-memory computations for edge inference using charge accumulation and sharing in standard 8T-SRAM arrays. IEEE J Emerg Sel Top Circuits Syst, 2020, 10, 295 doi: 10.1109/JETCAS.2020.3014250
[78]
Yue J S, Yuan Z, Feng X Y, et al. A 65nm computing-in-memory-based CNN processor with 2.9-to-35.8TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse. 2020 IEEE International Solid-State Circuits Conference, 2020, 234
[79]
Lin Z T, Zhan H L, Chen Z W, et al. Cascade current mirror to improve linearity and consistency in SRAM in-memory computing. IEEE J Solid State Circuits, 2021, 56, 2550 doi: 10.1109/JSSC.2021.3063719
[80]
Lin Z T, Fang Y Q, Peng C Y, et al. Current mirror-based compensation circuit for multi-row read in-memory computing. Electron Lett, 2019, 55, 1176 doi: 10.1049/el.2019.2415
[81]
Kim Y, Kim H, Park J, et al. Mapping binary resnets on computing-in-memory hardware with low-bit ADCs. 2021 Design, Automation & Test in Europe Conference & Exhibition, 2021, 856
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7902 Times PDF downloads: 1155 Times Cited by: 0 Times

    History

    Received: 28 August 2021 Revised: 04 November 2021 Online: Accepted Manuscript: 27 December 2021Uncorrected proof: 31 December 2021Published: 10 March 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao, Junning Chen. A review on SRAM-based computing in-memory: Circuits, functions, and applications[J]. Journal of Semiconductors, 2022, 43(3): 031401. doi: 10.1088/1674-4926/43/3/031401 ****Z T Lin, Z Z Tong, J Zhang, F M Wang, T Xu, Y Zhao, X L Wu, C Y Peng, W J Lu, Q Zhao, J N Chen, A review on SRAM-based computing in-memory: Circuits, functions, and applications[J]. J. Semicond., 2022, 43(3): 031401. doi: 10.1088/1674-4926/43/3/031401.
      Citation:
      Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao, Junning Chen. A review on SRAM-based computing in-memory: Circuits, functions, and applications[J]. Journal of Semiconductors, 2022, 43(3): 031401. doi: 10.1088/1674-4926/43/3/031401 ****
      Z T Lin, Z Z Tong, J Zhang, F M Wang, T Xu, Y Zhao, X L Wu, C Y Peng, W J Lu, Q Zhao, J N Chen, A review on SRAM-based computing in-memory: Circuits, functions, and applications[J]. J. Semicond., 2022, 43(3): 031401. doi: 10.1088/1674-4926/43/3/031401.

      A review on SRAM-based computing in-memory: Circuits, functions, and applications

      DOI: 10.1088/1674-4926/43/3/031401
      More Information
      • Zhiting Lin:(SM’16) received the B.S. and Ph.D. degrees in electronics and information engineering from the University of Science and Technology of China (USTC), Hefei, China, in 2004 and 2009, respectively. From 2015 to 2016, he was a visiting scholar with the Engineering and Computer Science Department, Baylor University, Waco, TX, USA. In 2011, he joined the Department of Electronics and Information Engineering, Anhui University, Hefei, Anhui. He is currently a professor at the Department of Integrated Circuit, Anhui University. He has published about 50 articles and holds over 20 Chinese patents. His research interests include pipeline analog-to-digital converters and high-performance static random-access memory
      • Xiulong Wu:received the B.S. degree in computer science from the University of Science and Technology of China (USTC), Hefei, China, in 2001, and the M.S. and Ph.D. degrees in electronic engineering from Anhui University, Hefei, in 2005 and 2008, respectively. From 2013 to 2014, he was a visiting scholar with the Engineering Department, The University of Texas at Dallas, Richardson, TX, USA. He is a professor at Anhui University. He has published about 60 articles and holds over 10 Chinese patents. His research interests include high-performance static random-access memory and mixed-signal ICs
      • Corresponding author: xiulong@ahu.edu.cn
      • Received Date: 2021-08-28
      • Accepted Date: 2021-12-23
      • Revised Date: 2021-11-04
      • Published Date: 2022-03-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return