Citation: |
Mengjia Li, Lixiu Zhang, Cong Chen, Jiangzhao Chen, Liming Ding. The degradation of perovskite precursor[J]. Journal of Semiconductors, 2023, 44(1): 010201. doi: 10.1088/1674-4926/44/1/010201
****
M J Li, L X Zhang, C Chen, J Z Chen, L M Ding. The degradation of perovskite precursor[J]. J. Semicond, 2023, 44(1): 010201. doi: 10.1088/1674-4926/44/1/010201
|
-
References
[1] Lee J W, Tan S, Seok S I, et al. Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186 doi: 10.1126/science.abj1186[2] Wang S, Tan L, Zhou J, et al. Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule, 2022, 6, 1344 doi: 10.1016/j.joule.2022.05.002[3] Chen C, Zheng S, Song H. Photon management to reduce energy loss in perovskite solar cells. Chem Soc Rev, 2021, 50, 7250 doi: 10.1039/D0CS01488E[4] Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203[5] Zhang Y, Ma Y, Wang Y, et al. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv Mater, 2021, 33, 2006691 doi: 10.1002/adma.202006691[6] Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2018, 119, 3418 doi: 10.1021/acs.chemrev.8b00336[7] Mei A, Sheng Y, Ming Y, et al. Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9, 000-h operational tracking. Joule, 2020, 4, 2646 doi: 10.1016/j.joule.2020.09.010[8] Liu Z, Liu P, Li M, et al. Efficient and stable FA-rich perovskite photovoltaics: From material properties to device optimization. Adv Energy Mater, 2022, 2200111 doi: 10.1002/aenm.202200111[9] Huang Y, Lei X, He T, et al. Recent progress on formamidinium-dominated perovskite photovoltaics. Adv Energy Mater, 2022, 12, 2100690 doi: 10.1002/aenm.202100690[10] Wang Y, Zhang X, Shi Z, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43, 040202 doi: 10.1088/1674-4926/43/4/040202[11] Driscoll E, Orera A, Anderson P, et al. Raman spectroscopy insights into the α-and δ-phases of formamidinium lead iodide (FAPbI3). Dalton Trans, 2021, 50, 3315 doi: 10.1039/D0DT04300A[12] Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014[13] Wang X, Fan Y, Wang L, et al. Perovskite solution aging: What happened and how to inhibit? Chem, 2020(6), 1369 doi: 10.1016/j.chempr.2020.02.016[14] Dong Q, Shang W, Yu X, et al. Critical Role of organoamines in the irreversible degradation of a metal halide perovskite precursor colloid: Mechanism and inhibiting strategy. ACS Energy Lett, 2021, 7, 481 doi: 10.1021/acsenergylett.1c02449[15] Chen S, Xiao X, Gu H, et al. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci Adv, 2021, 7, eabe8130 doi: 10.1126/sciadv.abe8130[16] Li Z, Xing Z, Peng H, et al. Reactive inhibition strategy for triple-cation mixed-halide perovskite ink with prolonged shelf-life. Adv Energy Mater, 2022, 12, 2200650 doi: 10.1002/aenm.202200650[17] Chen C, Rao Y, Li Z, et al. Stabilizing formamidinium lead iodide perovskite precursor solution with phenylboric acid. Sol RRL, 2021, 5, 2000715 doi: 10.1002/solr.202000715[18] Min H, Kim G, Paik M J, et al. Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv Energy Mater, 2019, 9, 1803476 doi: 10.1002/aenm.201803476[19] Qin M, Cao J, Zhang T, et al. Fused-ring electron acceptor ITIC-Th: A novel stabilizer for halide perovskite precursor solution. Adv Energy Mater, 2018, 8, 1703399 doi: 10.1002/aenm.201703399[20] Wang L, Zhou H, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265 doi: 10.1126/science.aau5701[21] Li M, Gao D, Zhang B, et al. Multifunctional reductive molecular modulator toward efficient and stable perovskite solar cells. Sol RRL, 2021, 5, 2100320 doi: 10.1002/solr.202100320[22] Li M, Li H, Zhuang Q, et al. Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency. Angew Chem Int Ed, 2022, 61, e202206914 doi: 10.1002/anie.202206914[23] Zuo C, Ding L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6, 9935 doi: 10.1039/C4NR02425G[24] Wang A, Wang J, Niu X, et al. Inhibiting octahedral tilting for stable CsPbI2Br solar cells. InfoMat, 2022, 4, e12263 doi: 10.1002/inf2.12263[25] Ke L, Ding L. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203[26] Wang S, Zhang X, Zhu W, et al. Lewis base manipulated crystallization for efficient tin halide perovskite solar cells. Appl Surf Sci, 2022, 602, 154393 doi: 10.1016/j.apsusc.2022.154393[27] Wang H, Zhang L, Cheng M, et al. Compositional engineering for lead halide perovskite solar cells. J Semicond, 2022, 43, 080202 doi: 10.1088/1674-4926/43/8/080202[28] Jiang S, Xiong S, Dong W, et al. Constructing chromium multioxide hole-selective heterojunction for high-performance perovskite solar cells. Adv Sci, 2022, 2203681 doi: 10.1002/advs.202203681[29] Zhou J, Li M, Wang S, et al. 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy, 2022, 95, 107036 doi: 10.1016/j.nanoen.2022.107036[30] Xiao H, Zuo C, Liu F, et al. Drop-coating produces efficient CsPbI2Br solar cells. J Semicond, 2021, 42, 050502 doi: 10.1088/1674-4926/42/5/050502[31] Zhang L, Zuo C, Ding L. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 2021, 42, 072201 doi: 10.1088/1674-4926/42/7/072201[32] Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203[33] Fang Z, Zhang L, Liu S F, et al. Organic ammonium halides enhance the performance of Pb–Sn perovskite solar cells. J Semicond, 2022, 43, 120202 doi: 10.1088/1674-4926/43/12/120202[34] Liu X, Yu Z, Wang T, et al. Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv Energy Mater, 2020, 10, 2001958 doi: 10.1002/aenm.202001958[35] Fang Z, Zeng Q, Zuo C, et al. Perovskite-based tandem solar cells. Sci Bull, 2021, 66, 621 doi: 10.1016/j.scib.2020.11.006[36] Liu L, Xiao Z, Zuo C, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501[37] Cheng Y, Ding L. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat, 2021, 1, 324 doi: 10.1002/sus2.25[38] Zhao D, Ding L. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 2020, 65, 1144 doi: 10.1016/j.scib.2020.04.013[39] Xiao Y, Zuo C, Zhong J X, et al. Large-area blade-coated solar cells: Advances and perspectives. Adv Energy Mater, 2021, 11, 2100378 doi: 10.1002/aenm.202100378[40] Zuo C, Vak D, Angmo D, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185 doi: 10.1016/j.nanoen.2018.01.037[41] Lei T, Li F, Zhu X, et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol RRL, 2020, 4, 2000292 doi: 10.1002/solr.202000292[42] Huang K, Peng Y, Gao Y, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419[43] Li M, Zhou J, Tan L, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 2022, 3, 100310 doi: 10.1016/j.xinn.2022.100310[44] Cheng Y, Yang Q D, Ding L. Encapsulation for perovskite solar cells. Sci Bull, 2021, 66, 100 doi: 10.1016/j.scib.2020.08.029 -
Proportional views