Citation: |
Zheng Tang, Liming Ding. The voltage loss in organic solar cells[J]. Journal of Semiconductors, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202
****
Z Tang, L M Ding. The voltage loss in organic solar cells[J]. J. Semicond, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202
|
-
References
[1] Meng L, Zhang Y, Wan, X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094 doi: 10.1126/science.aat2612[2] Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001[3] Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6, 171 doi: 10.1016/j.joule.2021.12.017[4] Lin Y, Wang J, Zhang Z G, et al. An Electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317[5] Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004[6] Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part I material science). Sci China Chem, 2022, 65, 224 doi: 10.1007/s11426-021-1180-6[7] Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part II device engineering). Sci China Chem, 2022, 65, 1457 doi: 10.1007/s11426-022-1256-8[8] Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502[9] Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501[10] Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501[11] Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, 61, e202207762 doi: 10.1002/ange.202207762[12] Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy, 2022, 5(1), e250 doi: 10.1002/cey2.250[13] Jin K, Ou Z, Zhang L, et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 2022, 43, 050501 doi: 10.1088/1674-4926/43/5/050501[14] Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0[15] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034[16] Koster L J A, Mihailetchi V D, Ramaker R et al. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett, 2005, 86, 123509 doi: 10.1063/1.1889240[17] Vandewal K, Tvingstedt K, Gadisa A, et al. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat Mater, 2009, 8, 904 doi: 10.1038/nmat2548[18] Vandewal K, Tvingstedt K, Gadisa A, et al. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys Rev B, 2010, 81, 125204 doi: 10.1103/PhysRevB.81.125204[19] Tang Z, Liu B, Melianas A, et al. A new fullerene-free bulk-heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. Adv Mater, 2015, 27, 1900 doi: 10.1002/adma.201405485[20] Veldman D, Meskers S C J, Janssen R A J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater, 2009, 19, 1939 doi: 10.1002/adfm.200900090[21] Vandewal K, Widmer J, Heumueller T, et al. Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv Mater, 2014, 26, 3839 doi: 10.1002/adma.201400114[22] Faist M A, Kirchartz T, Gong W, et al. Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer: fullerene solar cells. J Am Chem Soc, 2012, 134, 685 doi: 10.1021/ja210029w[23] Song J, Zhu L, Li C, et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542 doi: 10.1016/j.matt.2021.06.010[24] Qian D, Zheng Z, Yao H, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat Mater, 2018, 17, 703 doi: 10.1038/s41563-018-0128-z[25] Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu Rev Phys Chem, 2017, 67, 113 doi: 10.1146/annurev-physchem-040215-112144[26] Ma Z, Sun W, Himmelberger S, et al. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy Environ Sci, 2014, 7, 361 doi: 10.1039/C3EE42989J[27] Benduhn J, Tvingstedt K, Piersimoni F, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.53[28] Ullbrich S, Benduhn J, Jia X, et al. Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nat Mater, 2019, 18, 459 doi: 10.1038/s41563-019-0324-5[29] Wang J, Jiang X, Wu H, et al. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat Commun, 2021, 12, 6679 doi: 10.1038/s41467-021-26995-1[30] Azzouzi M, Yan J, Kirchartz T, et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys Rev X, 2018, 8, 031055 doi: 10.1103/PhysRevX.8.031055[31] Chen X K, Qian D, Wang Y, et al. A unified description of non-radiative voltage losses in organic solar cells. Nat Energy, 2021, 6, 799 doi: 10.1038/s41560-021-00843-4[32] Eisner F D, Azzouzi M, Fei Z, et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J Am Chem Soc, 2019, 141, 6362 doi: 10.1021/jacs.9b01465[33] Duan X, Song W, Qiao J, et al. Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ Sci, 2022, 15, 1563 doi: 10.1039/D1EE03989J[34] Lin B, Zhou X, Zhao H, et al. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy Environ Sci, 2020, 13, 2467 doi: 10.1039/D0EE00774A[35] Zheng Z, Li M, Qin Z, et al. Achieving small non-radiative energy loss through synergical non-fullerene electron acceptor selection and side chain engineering in benzo[1,2-b:4,5-b′]difuran polymer-based organic solar cells. J Mater Chem A, 2021, 9, 15798 doi: 10.1039/D1TA04214A[36] Liang S, Wang J, Ouyang Y, et al. Double-cable conjugated polymers with rigid phenyl linkers for single-component organic solar cells. Macromolecules, 2022, 55, 2517 doi: 10.1021/acs.macromol.1c02593[37] Liu H, Li M, Wu H, et al. Improving quantum efficiency in organic solar cells with a small energetic driving force. J Mater Chem A, 2021, 9, 19770 doi: 10.1039/D1TA00576F[38] Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301[39] Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201 -
Proportional views