Fig. 1.
(Color online) (a) A PL spectrum taken at 4 K (solid line) with the calculated spectral distribution of type 1 DAPs shown in colored solid lines. (b) Calculated emission energies as a function of Rm, the distance between donors and acceptors. (c) Coincidence of measured emission energies. Figures are adapted from Ref. [11] with permission.
Citation: |
Xin Lu. Single photon emitters originating from donor–acceptor pairs[J]. Journal of Semiconductors, 2023, 44(1): 010401. doi: 10.1088/1674-4926/44/1/010401
****
X Lu. Single photon emitters originating from donor–acceptor pairs[J]. J. Semicond, 2023, 44(1): 010401. doi: 10.1088/1674-4926/44/1/010401
|
Single photon emitters originating from donor–acceptor pairs
DOI: 10.1088/1674-4926/44/1/010401
More Information
-
References
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896[2] Toth M, Aharonovich I. Single photon sources in atomically thin materials. Annu Rev Phys Chem, 2019, 70, 123 doi: 10.1146/annurev-physchem-042018-052628[3] Liu X L, Hersam M C. 2D materials for quantum information science. Nat Rev Mater, 2019, 4, 669 doi: 10.1038/s41578-019-0136-x[4] Turunen M, Brotons-Gisbert M, Dai Y Y, et al. Quantum photonics with layered 2D materials. Nat Rev Phys, 2022, 4, 219 doi: 10.1038/s42254-021-00408-0[5] Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3, 38 doi: 10.1038/s41578-018-0008-9[6] Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A[7] Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093 doi: 10.1038/ncomms15093[8] Branny A, Kumar S, Proux R, et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun, 2017, 8, 15053 doi: 10.1038/ncomms15053[9] Xu X H, Martin Z O, Sychev D, et al. Creating quantum emitters in hexagonal boron nitride deterministically on chip-compatible substrates. Nano Lett, 2021, 21, 8182 doi: 10.1021/acs.nanolett.1c02640[10] Hayee F, Yu L, Zhang J L, et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat Mater, 2020, 19, 534 doi: 10.1038/s41563-020-0616-9[11] Tan Q H, Lai J M, Liu X L, et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett, 2022, 22, 1331 doi: 10.1021/acs.nanolett.1c04647[12] Auburger P, Gali A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys Rev B, 2021, 104, 075410 doi: 10.1103/PhysRevB.104.075410 -
Proportional views