Citation: |
Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav. Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design[J]. Journal of Semiconductors, 2023, 44(11): 114103. doi: 10.1088/1674-4926/44/11/114103
****
Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav, Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design[J]. Journal of Semiconductors, 2023, 44(11), 114103 doi: 10.1088/1674-4926/44/11/114103
|
Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design
DOI: 10.1088/1674-4926/44/11/114103
More Information
-
Abstract
This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The I−V characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (Vt), drain current (ION), OFF current (IOFF), and ON-OFF current ratio (ION/IOFF) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (gm), output transconductance (gds), gain (gm/gds), transconductance generation factor (TGF), cut-off frequency (fT), maximum oscillation frequency (fmax), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (gm2, gm3), voltage intercept points (VIP2, VIP3) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more gm and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool. -
References
[1] Hu C M. Device challenges and opportunities. Digest of Technical Papers, 2004 Symposium on VLSI Technology, 2004, 4 doi: 10.1109/VLSIT.2004.1345359[2] Skotnicki T, Hutchby J A, King T J, et al. The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits Devices Mag, 2005, 21, 16 doi: 10.1109/MCD.2005.1388765[3] Bhattacharya D, Jha N K. FinFETs: From devices to architectures. Adv Electron, 2014, 2014, 1 doi: 10.1155/2014/365689[4] Bulusu A, Dasgupta S. Insights into channel potentials and electron quasi-Fermi potentials for DG tunnel FETs. J Semicond, 2015, 36, 014005 doi: 10.1088/1674-4926/36/1/014005[5] Narendar V, Mishra R A. Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct, 2015, 85, 357 doi: 10.1016/j.spmi.2015.06.004[6] Yeh M S, Wu Y C, Hung M F, et al. Fabrication, characterization and simulation of Ω-gate twin poly-Si FinFET nonvolatile memory. Nanoscale Res Lett, 2013, 8, 331 doi: 10.1186/1556-276X-8-331[7] Leung G, Chui C O. Variability of inversion-mode and junctionless FinFETs due to line edge roughness. IEEE Electron Device Lett, 2011, 32, 1489 doi: 10.1109/LED.2011.2164233[8] Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nature Nanotech, 2010, 5, 225 doi: 10.1038/nnano.2010.15[9] Liu X, Wu M L, Jin X S, et al. The optimal design of 15 nm gate-length junctionless SOI FinFETs for reducing leakage current. Semicond Sci Technol, 2013, 28, 105013 doi: 10.1088/0268-1242/28/10/105013[10] Chang W T, Lin Y S, Shih C T. Threshold voltage and transconductance shifting reliance on strained-SiGe channel dimension. Solid State Electron, 2015, 110, 10 doi: 10.1016/j.sse.2014.11.012[11] Das R, Goswami R, Baishya S. Tri-gate heterojunction SOI Ge-FinFETs. Superlattices Microstruct, 2016, 91, 51 doi: 10.1016/j.spmi.2015.12.039[12] Kumar M J, Venkataraman V, Nawal S. Impact of strain or Ge content on the threshold voltage of nanoscale strained-Si/SiGe bulk MOSFETs. IEEE Trans Device Mater Reliab, 2007, 7, 181 doi: 10.1109/TDMR.2006.889269[13] Singh T V, Jagadesh Kumar M. Effect of the Ge mole fraction on the formation of a conduction path in cylindrical strained-silicon-on-SiGe MOSFETs. Superlattices Microstruct, 2008, 44, 79 doi: 10.1016/j.spmi.2008.02.007[14] Venkataraman V, Nawal S, Kumar M J. Compact analytical threshold-voltage model of nanoscale fully depleted strained-Si on silicon–germanium-on-insu lator (SGOI) MOSFETs. IEEE Trans Electron Devices, 2007, 54, 554 doi: 10.1109/TED.2006.890369[15] Ding F, Wu Y T, Connelly D, et al. Simulation-based study of Si/Si0.9Ge0.1/Si hetero-channel FinFET for enhanced performance in low-power applications. IEEE Electron Device Lett, 2019, 40, 363 doi: 10.1109/LED.2019.2895323[16] Jaisawal R K, Rathore S, Kondekar P N, et al. Assessing the analog/RF and linearity performances of FinFET using high threshold voltage techniques. Semicond Sci Technol, 2022, 37, 055010 doi: 10.1088/1361-6641/ac6128[17] Ghosh D, Kranti Abhinav. Impact of channel doping and spacer architecture on analog/RF perfromance of lower power junctionless MOSFETs . Semicond Sci Technol, 2015, 30, 015002 doi: 10.1088/0268-1242/30/1/015002[18] Genius C. A CMOS TCAD Simulation Tool, User's Guide.[19] Rios R, Cappellani A, Armstrong M, et al. Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett, 2011, 32, 1170 doi: 10.1109/LED.2011.2158978[20] Colinge J P. FinFETs and other multi-gate transistors. Springer, 2008[21] Badaroglu M. More Moore. 2021 IEEE International Roadmap for Devices and Systems Outbriefs, 2022, 1[22] Rahimian M, Orouji A A, Aminbeidokhti A. A novel deep submicron SiGe-on-insulator (SGOI) MOSFET with modified channel band energy for electrical performance improvement. Curr Appl Phys, 2013, 13, 779 doi: 10.1016/j.cap.2012.12.005[23] Hu L D, Lou H J, Li W T, et al. Suppression of statistical variability in junctionless FinFET using accumulation-mode and charge plasma structure. IEEE Trans Electron Devices, 2021, 68, 399 doi: 10.1109/TED.2020.3040137[24] Seo J H, Yuan H, Kang I M. Design optimization of silicon-based junctionless fin-type field-effect transistors for low standby power technology. J Electr Eng Technol, 2013, 8, 1497 doi: 10.5370/JEET.2013.8.6.1497[25] Biswas K, Sarkar A, Sarkar C K. Linearity and analog performance analysis of silicon junctionless bulk FinFET considering gate electrode workfunction variability and different fin aspect ratio. Silicon, 2022, 14, 7531 doi: 10.1007/s12633-021-01513-6[26] Srivastava N A, Priya A, Mishra R A. Analog and radio-frequency performance of nanoscale SOI MOSFET for RFIC based communication systems. Microelectron J, 2020, 98, 104731 doi: 10.1016/j.mejo.2020.104731[27] Jegadheesan V, Sivasankaran K. RF stability performance of SOI junctionless FinFET and impact of process variation. Microelectron J, 2017, 59, 15 doi: 10.1016/j.mejo.2016.11.004[28] Barman K R, Baishya S. An insight into the DC and analog/RF response of a junctionless vertical super-thin body FET towards high-K gate dielectrics. Silicon, 2022, 14, 6113 doi: 10.1007/s12633-021-01393-w[29] Manikandan S, Balamurugan N B. The improved RF/stability and linearity performance of the ultrathin-body Gaussian-doped junctionless FinFET. J Comput Electron, 2020, 19, 613 doi: 10.1007/s10825-020-01472-y[30] Schwierz F, Liou J J. Semiconductor devices for RF applications: Evolution and current status. Microelectron Reliab, 2001, 41, 145 doi: 10.1016/S0026-2714(00)00076-7[31] Sarkar A, Kumar Das A, De S, et al. Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron J, 2012, 43, 873 doi: 10.1016/j.mejo.2012.06.002 -
Proportional views