Citation: |
Yuefei Wang, Yurui Han, Chong Gao, Bingsheng Li, Jiangang Ma, Haiyang Xu, Aidong Shen, Yichun Liu. Preparation and photodetection performance of high crystalline quality and large size β-Ga2O3 microwires[J]. Journal of Semiconductors, 2023, 44(6): 062806. doi: 10.1088/1674-4926/44/6/062806
****
Y F Wang, Y R Han, C Gao, B S Li, J G Ma, H Y Xu, A D Shen, Y C Liu. Preparation and photodetection performance of high crystalline quality and large size β-Ga2O3 microwires[J]. J. Semicond, 2023, 44(6): 062806. doi: 10.1088/1674-4926/44/6/062806
|
Preparation and photodetection performance of high crystalline quality and large size β-Ga2O3 microwires
DOI: 10.1088/1674-4926/44/6/062806
More Information
-
Abstract
Ultrawide band gap semiconductors are promising solar-blind ultraviolet (UV) photodetector materials due to their suitable bandgap, strong absorption and high sensitivity. Here, β-Ga2O3 microwires with high crystal quality and large size were grown by the chemical vapor deposition (CVD) method. The microwires reach up to 1 cm in length and were single crystalline with low defect density. Owing to its high crystal quality, a metal–semiconductor–metal photodetector fabricated from a Ga2O3 microwire showed a responsivity of 1.2 A/W at 240 nm with an ultrahigh UV/visible rejection ratio (Rpeak/R400 nm) of 5.8 × 105, indicating that the device has excellent spectral selectivity. In addition, no obvious persistent photoconductivity was observed in the test. The rise and decay time constants of the device were 0.13 and 0.14 s, respectively. This work not only provides a growth method for high-quality Ga2O3 microwires, but also demonstrates the excellent performance of Ga2O3 microwires in solar-blind ultraviolet detection.-
Keywords:
- solar-blind photodetector,
- β-Ga2O3,
- microwire
-
References
[1] Varshney U, Aggarwal N, Gupta G. Current advances in solar-blind photodetection technology: Using Ga2O3 and AlGaN. J Mater Chem C, 2022, 10, 1573 doi: 10.1039/D1TC05101F[2] Chen X H, Ren F F, Ye J D, et al. Gallium oxide-based solar-blind ultraviolet photodetectors. Semicond Sci Technol, 2020, 35, 023001 doi: 10.1088/1361-6641/ab6102[3] Xu J J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J Mater Chem C, 2019, 7, 8753 doi: 10.1039/C9TC02055A[4] Qin Y, Long S B, Dong H, et al. Review of deep ultraviolet photodetector based on gallium oxide. Chin Phys B, 2019, 28, 018501 doi: 10.1088/1674-1056/28/1/018501[5] Chen X H, Ren F F, Gu S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon Res, 2019, 7, 381 doi: 10.1364/PRJ.7.000381[6] Walker D, Kumar V, Mi K, et al. Solar-blind AlGaN photodiodes with very low cutoff wavelength. Appl Phys Lett, 2000, 76, 403 doi: 10.1063/1.125768[7] Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range. Appl Phys Lett, 2008, 93, 173505 doi: 10.1063/1.3002371[8] Chen H Y, Yu P P, Zhang Z Z, et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 2016, 12, 5809 doi: 10.1002/smll.201601913[9] Chen Y C, Lu Y J, Lin C N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C, 2018, 6, 5727 doi: 10.1039/C8TC01122B[10] Lin C N, Lu Y J, Yang X, et al. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv Opt Mater, 2018, 6, 1800068 doi: 10.1002/adom.201800068[11] Lin C N, Lu Y J, Tian Y Z, et al. Diamond based photodetectors for solar-blind communication. Opt Express, 2019, 27, 29962 doi: 10.1364/OE.27.029962[12] Guo D Y, Wu Z P, Li P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 2014, 4, 1067 doi: 10.1364/OME.4.001067[13] Peng Y K, Zhang Y, Chen Z W, et al. Arrays of solar-blind ultraviolet photodetector based on β-Ga2O3 epitaxial thin films. IEEE Photonics Technol Lett, 2018, 30, 993 doi: 10.1109/LPT.2018.2826560[14] Chen Y C, Lu Y J, Liu Q, et al. Ga2O3 photodetector arrays for solar-blind imaging. J Mater Chem C, 2019, 7, 2557 doi: 10.1039/C8TC05251D[15] Wu C, Wu F M, Hu H Z, et al. Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors. Appl Phys Lett, 2022, 120, 101102 doi: 10.1063/5.0080855[16] Guo D, Guo Q, Chen Z, et al. Review of Ga2O3-based optoelectronic devices. Mater Today Phys, 2019, 11, 100157 doi: 10.1016/j.mtphys.2019.100157[17] Guo D, Chen K, Wang S, et al. Self-powered solar-blind photodetectors based on α/β phase junction of Ga2O3. Phys Rev Appl, 2020, 13, 024051 doi: 10.1103/PhysRevApplied.13.024051[18] Wu C, Wu F, Ma C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater Today Phys, 2022, 23, 100643 doi: 10.1016/j.mtphys.2022.100643[19] Chen Y C, Yang X, Zhang C Y, et al. Ga2O3-based solar-blind position-sensitive detector for noncontact measurement and optoelectronic demodulation. Nano Lett, 2022, 22, 4888 doi: 10.1021/acs.nanolett.2c01322[20] Zhang Z F, Zhao X L, Zhang X M, et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat Commun, 2022, 13, 6590 doi: 10.1038/s41467-022-34230-8[21] Hou X H, Zhao X L, Zhang Y, et al. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv Mater, 2022, 34, 2270009 doi: 10.1002/adma.202270009[22] Green A J, Chabak K D, Heller E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped: Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37, 902 doi: 10.1109/LED.2016.2568139[23] Pearton S J, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941[24] Yang C, Liang H W, Zhang Z Z, et al. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv, 2018, 8, 6341 doi: 10.1039/C8RA00523K[25] Alema F, Hertog B, Mukhopadhyay P, et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. APL Mater, 2019, 7, 022527 doi: 10.1063/1.5064471[26] Li Y B, Tokizono T, Liao M Y, et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv Funct Mater, 2010, 20, 3972 doi: 10.1002/adfm.201001140[27] Feng W, Wang X N, Zhang J, et al. Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors. J Mater Chem C, 2014, 2, 3254 doi: 10.1039/C3TC31899K[28] Wang Y F, Li L, Wang H B, et al. An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction. Nanoscale, 2020, 12, 1406 doi: 10.1039/C9NR09095A[29] Chen X, Liu K W, Zhang Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl Mater Interfaces, 2016, 8, 4185 doi: 10.1021/acsami.5b11956[30] Wang H B, Chen H Y, Li L, et al. High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT:PSS/β-Ga2O3 organic/inorganic p-n junction. J Phys Chem Lett, 2019, 10, 6850 doi: 10.1021/acs.jpclett.9b02793[31] Zhao B, Wang F, Chen H Y, et al. An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO –Ga2O3 heterostructures. Adv Funct Mater, 2017, 27, 1700264 doi: 10.1002/adfm.201700264[32] Carrano J C, Li T, Grudowski P A, et al. Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN. J Appl Phys, 1998, 83, 6148 doi: 10.1063/1.367484[33] Zhou J J, Jiang R L, Sha J, et al. Photocurrent properties of high-sensitivity GaN ultraviolet photodetectors. Chin Phys, 2003, 12, 785 doi: 10.1088/1009-1963/12/7/315[34] Sze S M, Ng K K. Physics of semiconductor devices. 3rd ed. 2006[35] Su L X, Ouyang W X, Fang X S. Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors. J Semicond, 2021, 42, 052301 doi: 10.1088/1674-4926/42/5/052301 -
Proportional views