J. Semicond. > 2023, Volume 44 > Issue 7 > 070301

COMMENTS AND OPINIONS

Vertical β-Ga2O3 power electronics

Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang and Shibing Long

+ Author Affiliations

 Corresponding author: Guangwei Xu, xugw@ustc.edu.cn; Shibing Long, shibinglong@ustc.edu.cn

DOI: 10.1088/1674-4926/44/7/070301

PDF

Turn off MathJax



[1]
Green A J, Speck J, Xing G, et al. β-Gallium oxide power electronics. APL Mater, 2022, 10, 029201 doi: 10.1063/5.0060327
[2]
Yuan Y, Hao W B, Mu W X, et al. Toward emerging gallium oxide semiconductors: A roadmap. Fundam Res, 2021, 1, 697 doi: 10.1016/j.fmre.2021.11.002
[3]
Chen H, Wang H Y, Wang C, et al. Low specific on-resistance and low leakage current β-Ga2O3 (001) Schottky barrier diode through contact pre-treatment. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 145 doi: 10.1109/ISPSD49238.2022.9813657
[4]
He Q M, Hao W B, Zhou X Z, et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett, 2022, 43, 264 doi: 10.1109/LED.2021.3133866
[5]
Hou C X, Gazoni R M, Reeves R J, et al. Oxidized metal Schottky contacts on (010) β-Ga2O3. IEEE Electron Device Lett, 2019, 40, 337 doi: 10.1109/LED.2019.2891304
[6]
Jian G Z, Hao W B, Shi Z Y, et al. Elevated barrier height originated from electric dipole effect and improved breakdown characteristics in PtOx/β-Ga2O3 Schottky barrier diodes. J Phys D: Appl Phys, 2022, 55, 304003 doi: 10.1088/1361-6463/ac6d25
[7]
Harada T, Ito S, Tsukazaki A. Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation. Sci Adv, 2019, 5, eaax5733 doi: 10.1126/sciadv.aax5733
[8]
Xiong W H, Zhou X Z, Xu G W, et al. Double-barrier β-Ga2O3 Schottky barrier diode with low turn-on voltage and leakage current. IEEE Electron Device Lett, 2021, 42, 430 doi: 10.1109/LED.2021.3055349
[9]
Lingaparthi R, Sasaki K, Thieu Q T, et al. Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl Phys Express, 2019, 12, 074008 doi: 10.7567/1882-0786/ab2824
[10]
Hao W B, He Q M, Zhou K, et al. Low defect density and small I–V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 2021, 118, 043501 doi: 10.1063/5.0038349
[11]
Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110, 103506 doi: 10.1063/1.4977857
[12]
Roy S, Bhattacharyya A, Peterson C, et al. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl Phys Lett, 2023, 122, 152101 doi: 10.1063/5.0137935
[13]
He Q M, Zhou X Z, Li Q Y, et al. Selective high-resistance zones formed by oxygen annealing for-GaO Schottky diode applications. IEEE Electron Device Lett, 2022, 43, 1933 doi: 10.1109/LED.2022.3205326
[14]
Lin C H, Yuda Y, Wong M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett, 2019, 40, 1487 doi: 10.1109/LED.2019.2927790
[15]
Lu X, Zhang X, Jiang H X, et al. Vertical β-Ga2O3 Schottky barrier diodes with enhanced breakdown voltage and high switching performance. Phys Status Solidi A, 2020, 217, 1900497 doi: 10.1002/pssa.201900497
[16]
Hao W B, He Q M, Zhou X Z, et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 105 doi: 10.1109/ISPSD49238.2022.9813680
[17]
Hao W B, Wu F H, Li W S, et al. High-performance vertical β-Ga2O3 Schottky barrier diodes featuring P-NiO JTE with adjustable conductivity. 2022 International Electron Devices Meeting (IEDM), 2023, 9.5.1 doi: 10.1109/IEDM45625.2022.10019468
[18]
Hao W B, Wu F H, Li W S, et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. IEEE Trans Electron Devices, 2023, 70, 2129 doi: 10.1109/TED.2023.3241885
[19]
Sasaki K, Wakimoto D, Thieu Q T, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38, 783 doi: 10.1109/LED.2017.2696986
[20]
Li W S, Nomoto K, Hu Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron, Rsp of up to 0.95 GW//cm2. IEEE Electron Device Lett, 2020, 41, 107 doi: 10.1109/LED.2019.2953559
[21]
Li W S, Nomoto K, Hu Z Y, et al. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl Phys Express, 2019, 12, 061007 doi: 10.7567/1882-0786/ab206c
[22]
Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 12.4.1 doi: 10.1109/IEDM19573.2019.8993526
[23]
Wong M H, Murakami H, Kumagai Y, et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 2020, 41, 296 doi: 10.1109/LED.2019.2962657
[24]
Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 2022, 43, 1527 doi: 10.1109/LED.2022.3196035
[25]
Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292
[26]
Wakimoto D, Lin C H, Thieu Q T, et al. Nitrogen-doped β-Ga2O3 vertical transistors with a threshold voltage of ≥1.3 V and a channel mobility of 100 cm2V–1s–1. Appl Phys Express, 2023, 16, 036503 doi: 10.35848/1882-0786/acc30e
[27]
Ma Y J, Zhou X Z, Tang W B, et al. 702.3 A·cm−2/10.4 mΩ·cm2 β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 2023, 44, 384 doi: 10.1109/LED.2023.3235777
Fig. 1.  (Color online) The schematic diagram of the roadmap and structures for SBDs. Surface engineering technique (a), and edge termination techniques (b-e) have emerged in recent years.

Fig. 2.  (Color online) The schematic diagram of four kinds of vertical transistors, (a) fin field-effect transistor (FinFET), (b) current aperture vertical electron transistor (CAVET), (c) vertical diffused barrier field-effect transistor (VDBFET), and (d) U-shaped gate trench MOSFET (U-MOSFET).

[1]
Green A J, Speck J, Xing G, et al. β-Gallium oxide power electronics. APL Mater, 2022, 10, 029201 doi: 10.1063/5.0060327
[2]
Yuan Y, Hao W B, Mu W X, et al. Toward emerging gallium oxide semiconductors: A roadmap. Fundam Res, 2021, 1, 697 doi: 10.1016/j.fmre.2021.11.002
[3]
Chen H, Wang H Y, Wang C, et al. Low specific on-resistance and low leakage current β-Ga2O3 (001) Schottky barrier diode through contact pre-treatment. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 145 doi: 10.1109/ISPSD49238.2022.9813657
[4]
He Q M, Hao W B, Zhou X Z, et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett, 2022, 43, 264 doi: 10.1109/LED.2021.3133866
[5]
Hou C X, Gazoni R M, Reeves R J, et al. Oxidized metal Schottky contacts on (010) β-Ga2O3. IEEE Electron Device Lett, 2019, 40, 337 doi: 10.1109/LED.2019.2891304
[6]
Jian G Z, Hao W B, Shi Z Y, et al. Elevated barrier height originated from electric dipole effect and improved breakdown characteristics in PtOx/β-Ga2O3 Schottky barrier diodes. J Phys D: Appl Phys, 2022, 55, 304003 doi: 10.1088/1361-6463/ac6d25
[7]
Harada T, Ito S, Tsukazaki A. Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation. Sci Adv, 2019, 5, eaax5733 doi: 10.1126/sciadv.aax5733
[8]
Xiong W H, Zhou X Z, Xu G W, et al. Double-barrier β-Ga2O3 Schottky barrier diode with low turn-on voltage and leakage current. IEEE Electron Device Lett, 2021, 42, 430 doi: 10.1109/LED.2021.3055349
[9]
Lingaparthi R, Sasaki K, Thieu Q T, et al. Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl Phys Express, 2019, 12, 074008 doi: 10.7567/1882-0786/ab2824
[10]
Hao W B, He Q M, Zhou K, et al. Low defect density and small I–V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 2021, 118, 043501 doi: 10.1063/5.0038349
[11]
Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110, 103506 doi: 10.1063/1.4977857
[12]
Roy S, Bhattacharyya A, Peterson C, et al. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl Phys Lett, 2023, 122, 152101 doi: 10.1063/5.0137935
[13]
He Q M, Zhou X Z, Li Q Y, et al. Selective high-resistance zones formed by oxygen annealing for-GaO Schottky diode applications. IEEE Electron Device Lett, 2022, 43, 1933 doi: 10.1109/LED.2022.3205326
[14]
Lin C H, Yuda Y, Wong M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett, 2019, 40, 1487 doi: 10.1109/LED.2019.2927790
[15]
Lu X, Zhang X, Jiang H X, et al. Vertical β-Ga2O3 Schottky barrier diodes with enhanced breakdown voltage and high switching performance. Phys Status Solidi A, 2020, 217, 1900497 doi: 10.1002/pssa.201900497
[16]
Hao W B, He Q M, Zhou X Z, et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 105 doi: 10.1109/ISPSD49238.2022.9813680
[17]
Hao W B, Wu F H, Li W S, et al. High-performance vertical β-Ga2O3 Schottky barrier diodes featuring P-NiO JTE with adjustable conductivity. 2022 International Electron Devices Meeting (IEDM), 2023, 9.5.1 doi: 10.1109/IEDM45625.2022.10019468
[18]
Hao W B, Wu F H, Li W S, et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. IEEE Trans Electron Devices, 2023, 70, 2129 doi: 10.1109/TED.2023.3241885
[19]
Sasaki K, Wakimoto D, Thieu Q T, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38, 783 doi: 10.1109/LED.2017.2696986
[20]
Li W S, Nomoto K, Hu Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron, Rsp of up to 0.95 GW//cm2. IEEE Electron Device Lett, 2020, 41, 107 doi: 10.1109/LED.2019.2953559
[21]
Li W S, Nomoto K, Hu Z Y, et al. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl Phys Express, 2019, 12, 061007 doi: 10.7567/1882-0786/ab206c
[22]
Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 12.4.1 doi: 10.1109/IEDM19573.2019.8993526
[23]
Wong M H, Murakami H, Kumagai Y, et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 2020, 41, 296 doi: 10.1109/LED.2019.2962657
[24]
Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 2022, 43, 1527 doi: 10.1109/LED.2022.3196035
[25]
Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292
[26]
Wakimoto D, Lin C H, Thieu Q T, et al. Nitrogen-doped β-Ga2O3 vertical transistors with a threshold voltage of ≥1.3 V and a channel mobility of 100 cm2V–1s–1. Appl Phys Express, 2023, 16, 036503 doi: 10.35848/1882-0786/acc30e
[27]
Ma Y J, Zhou X Z, Tang W B, et al. 702.3 A·cm−2/10.4 mΩ·cm2 β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 2023, 44, 384 doi: 10.1109/LED.2023.3235777
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1065 Times PDF downloads: 180 Times Cited by: 0 Times

    History

    Received: 26 June 2023 Revised: Online: Accepted Manuscript: 29 June 2023Uncorrected proof: 30 June 2023Corrected proof: 05 July 2023Published: 10 July 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. Vertical β-Ga2O3 power electronics[J]. Journal of Semiconductors, 2023, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301 ****Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. 2023: Vertical β-Ga2O3 power electronics. Journal of Semiconductors, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301
      Citation:
      Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. Vertical β-Ga2O3 power electronics[J]. Journal of Semiconductors, 2023, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301 ****
      Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. 2023: Vertical β-Ga2O3 power electronics. Journal of Semiconductors, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301

      Vertical β-Ga2O3 power electronics

      DOI: 10.1088/1674-4926/44/7/070301
      More Information
      • Guangwei Xu:received his PhD from the Institute of Microelectronics of the Chinese Academy of Sciences in 2017. Then, he joined the University of California, Los Angeles as a postdoc. He joined the University of Science and Technology of China as an associate research fellow in the Shibing Long Group from 2019. His research focuses on Beta-Gallium Oxide power device fabrication, device defect state measurement and device modeling
      • Shu Yang:is a professor at the School of Microelectronics, University of Science and Technology of China. She received her B.S. degree from Fudan University and Ph.D. degree from Hong Kong University of Science and Technology (HKUST). She was a visiting assistant professor at HKUST, postdoctoral research associate at the University of Cambridge, and professor at Zhejiang University. Her research focuses on fabrication, characterization and application of wide-bandgap semiconductor power devices
      • Shibing Long:is a full professor at the School of Microelectronics, University of Science and Technology of China. He received his PhD from the Institute of Microelectronics of the Chinese Academy of Sciences in 2005. Then, he worked there from 2005 to 2018 and joined the University of Science and Technology of China in 2018. His research focuses on micro- and nanofabrication, RRAM, ultrawide bandgap semiconductor devices (power devices and detectors) and memory circuit design
      • Corresponding author: xugw@ustc.edu.cnshibinglong@ustc.edu.cn
      • Received Date: 2023-06-26
        Available Online: 2023-06-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return