Citation: |
Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. Vertical β-Ga2O3 power electronics[J]. Journal of Semiconductors, 2023, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301
****
Guangwei Xu, Feihong Wu, Qi Liu, Zhao Han, Weibing Hao, Jinbo Zhou, Xuanze Zhou, Shu Yang, Shibing Long. 2023: Vertical β-Ga2O3 power electronics. Journal of Semiconductors, 44(7): 070301. doi: 10.1088/1674-4926/44/7/070301
|
-
References
[1] Green A J, Speck J, Xing G, et al. β-Gallium oxide power electronics. APL Mater, 2022, 10, 029201 doi: 10.1063/5.0060327[2] Yuan Y, Hao W B, Mu W X, et al. Toward emerging gallium oxide semiconductors: A roadmap. Fundam Res, 2021, 1, 697 doi: 10.1016/j.fmre.2021.11.002[3] Chen H, Wang H Y, Wang C, et al. Low specific on-resistance and low leakage current β-Ga2O3 (001) Schottky barrier diode through contact pre-treatment. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 145 doi: 10.1109/ISPSD49238.2022.9813657[4] He Q M, Hao W B, Zhou X Z, et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett, 2022, 43, 264 doi: 10.1109/LED.2021.3133866[5] Hou C X, Gazoni R M, Reeves R J, et al. Oxidized metal Schottky contacts on (010) β-Ga2O3. IEEE Electron Device Lett, 2019, 40, 337 doi: 10.1109/LED.2019.2891304[6] Jian G Z, Hao W B, Shi Z Y, et al. Elevated barrier height originated from electric dipole effect and improved breakdown characteristics in PtOx/β-Ga2O3 Schottky barrier diodes. J Phys D: Appl Phys, 2022, 55, 304003 doi: 10.1088/1361-6463/ac6d25[7] Harada T, Ito S, Tsukazaki A. Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation. Sci Adv, 2019, 5, eaax5733 doi: 10.1126/sciadv.aax5733[8] Xiong W H, Zhou X Z, Xu G W, et al. Double-barrier β-Ga2O3 Schottky barrier diode with low turn-on voltage and leakage current. IEEE Electron Device Lett, 2021, 42, 430 doi: 10.1109/LED.2021.3055349[9] Lingaparthi R, Sasaki K, Thieu Q T, et al. Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl Phys Express, 2019, 12, 074008 doi: 10.7567/1882-0786/ab2824[10] Hao W B, He Q M, Zhou K, et al. Low defect density and small I–V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 2021, 118, 043501 doi: 10.1063/5.0038349[11] Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110, 103506 doi: 10.1063/1.4977857[12] Roy S, Bhattacharyya A, Peterson C, et al. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl Phys Lett, 2023, 122, 152101 doi: 10.1063/5.0137935[13] He Q M, Zhou X Z, Li Q Y, et al. Selective high-resistance zones formed by oxygen annealing for-GaO Schottky diode applications. IEEE Electron Device Lett, 2022, 43, 1933 doi: 10.1109/LED.2022.3205326[14] Lin C H, Yuda Y, Wong M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett, 2019, 40, 1487 doi: 10.1109/LED.2019.2927790[15] Lu X, Zhang X, Jiang H X, et al. Vertical β-Ga2O3 Schottky barrier diodes with enhanced breakdown voltage and high switching performance. Phys Status Solidi A, 2020, 217, 1900497 doi: 10.1002/pssa.201900497[16] Hao W B, He Q M, Zhou X Z, et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 105 doi: 10.1109/ISPSD49238.2022.9813680[17] Hao W B, Wu F H, Li W S, et al. High-performance vertical β-Ga2O3 Schottky barrier diodes featuring P-NiO JTE with adjustable conductivity. 2022 International Electron Devices Meeting (IEDM), 2023, 9.5.1 doi: 10.1109/IEDM45625.2022.10019468[18] Hao W B, Wu F H, Li W S, et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. IEEE Trans Electron Devices, 2023, 70, 2129 doi: 10.1109/TED.2023.3241885[19] Sasaki K, Wakimoto D, Thieu Q T, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38, 783 doi: 10.1109/LED.2017.2696986[20] Li W S, Nomoto K, Hu Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron, Rsp of up to 0.95 GW//cm2. IEEE Electron Device Lett, 2020, 41, 107 doi: 10.1109/LED.2019.2953559[21] Li W S, Nomoto K, Hu Z Y, et al. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl Phys Express, 2019, 12, 061007 doi: 10.7567/1882-0786/ab206c[22] Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 12.4.1 doi: 10.1109/IEDM19573.2019.8993526[23] Wong M H, Murakami H, Kumagai Y, et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 2020, 41, 296 doi: 10.1109/LED.2019.2962657[24] Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 2022, 43, 1527 doi: 10.1109/LED.2022.3196035[25] Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292[26] Wakimoto D, Lin C H, Thieu Q T, et al. Nitrogen-doped β-Ga2O3 vertical transistors with a threshold voltage of ≥1.3 V and a channel mobility of 100 cm2V–1s–1. Appl Phys Express, 2023, 16, 036503 doi: 10.35848/1882-0786/acc30e[27] Ma Y J, Zhou X Z, Tang W B, et al. 702.3 A·cm−2/10.4 mΩ·cm2 β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 2023, 44, 384 doi: 10.1109/LED.2023.3235777 -
Proportional views