Citation: |
Xiaodong Li, Jie Sun, Bozhang Li, Junfeng Fang, Liming Ding. Managing excess PbI2 for efficient perovskite solar cells[J]. Journal of Semiconductors, 2023, 44(8): 080202. doi: 10.1088/1674-4926/44/8/080202
****
X D Li, J Sun, B Z Li, J F Fang, L M Ding. Managing excess PbI2 for efficient perovskite solar cells[J]. J. Semicond, 2023, 44(8): 080202. doi: 10.1088/1674-4926/44/8/080202
|
Managing excess PbI2 for efficient perovskite solar cells
DOI: 10.1088/1674-4926/44/8/080202
More Information
-
References
[1] Zhao Y, Ma F, Qu Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531 doi: 10.1126/science.abp8873[2] Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587 doi: 10.1038/s41586-021-03285-w[3] Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2017, 2, 16177 doi: 10.1038/nenergy.2016.177[4] Chen Q, Zhou H P, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett, 2014, 14, 4158 doi: 10.1021/nl501838y[5] Luo C, Zhao Y, Wang X J, et al. Self-induced type-I band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv Mater, 2021, 33, 2103231 doi: 10.1002/adma.202103231[6] Jacobsson T J, Correa-Baena J P, Halvani A E, et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J Am Chem Soc, 2016, 138, 10331 doi: 10.1021/jacs.6b06320[7] Liu F Z, Dong Q, Wong M K, et al. Is excess PbI2 beneficial for perovskite solar cell performance? Adv Energy Mater, 2016, 6, 1502206 doi: 10.1002/aenm.201502206[8] Holovský J, Peter A A, Landová L, et al. Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells. ACS Energy Lett, 2019, 4, 3011 doi: 10.1021/acsenergylett.9b02080[9] Li X D, Fu S, Liu S Y, et al. Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy, 2019, 64, 103962 doi: 10.1016/j.nanoen.2019.103962[10] Wang T, Zhang Y, Kong W Y, et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science, 2022, 377, 1227 doi: 10.1126/science.abq6235[11] Li X D, Fu S, Zhang W X, et al. Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Sci Adv, 2020, 6, eabd1580 doi: 10.1126/sciadv.abd1580[12] Li X D, Zhang W X, Guo X M, et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 2022, 375, 434 doi: 10.1126/science.abl5676[13] Yu H, Lu H P, Xie F Y, et al. Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv Funct Mater, 2016, 26, 1411 doi: 10.1002/adfm.201504997[14] Zhao L C, Li Q Y, Hou C H, et al. Chemical polishing of perovskite surface enhances photovoltaic performances. J Am Chem Soc, 2022, 144, 1700 doi: 10.1021/jacs.1c10842[15] Wang H H, Wang Z W, Yang Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv Mater, 2020, 32, 2000865 doi: 10.1002/adma.202000865[16] Zhang H K, Yu W, Guo J X, et al. Excess PbI2 management via multimode supramolecular complex engineering enables high-performance perovskite solar cells. Adv Energy Mater, 2022, 12, 2201663 doi: 10.1002/aenm.202201663 -
Proportional views