Citation: |
Liyang Zhu, Kuangli Chen, Ying Ma, Yong Cai, Chunhua Zhou, Zhaoji Li, Bo Zhang, Qi Zhou. High threshold voltage enhancement-mode GaN p-FET with Si-rich LPCVD SiNx gate insulator for high hole mobility[J]. Journal of Semiconductors, 2023, 44(8): 082801. doi: 10.1088/1674-4926/44/8/082801
****
Liyang Zhu, Kuangli Chen, Ying Ma, Yong Cai, Chunhua Zhou, Zhaoji Li, Bo Zhang, Qi Zhou, High threshold voltage enhancement-mode GaN p-FET with Si-rich LPCVD SiNx gate insulator for high hole mobility[J]. Journal of Semiconductors, 2023, 44(8), 082801 doi: 10.1088/1674-4926/44/8/082801
|
High threshold voltage enhancement-mode GaN p-FET with Si-rich LPCVD SiNx gate insulator for high hole mobility
DOI: 10.1088/1674-4926/44/8/082801
More Information
-
Abstract
In this work, the GaN p-MISFET with LPCVD-SiNx is studied as a gate dielectric to improve device performance. By changing the Si/N stoichiometry of SiNx, it is found that the channel hole mobility can be effectively enhanced with Si-rich SiNx gate dielectric, which leads to a respectably improved drive current of GaN p-FET. The record high channel mobility of 19.4 cm2/(V∙s) was achieved in the device featuring an Enhancement-mode channel. Benefiting from the significantly improved channel mobility, the fabricated E-mode GaN p-MISFET is capable of delivering a decent-high current of 1.6 mA/mm, while simultaneously featuring a negative threshold-voltage (VTH) of –2.3 V (defining at a stringent criteria of 10 μA/mm). The device also exhibits a well pinch-off at 0 V with low leakage current of 1 nA/mm. This suggests that a decent E-mode operation of the fabricated p-FET is obtained. In addition, the VTH shows excellent stability, while the threshold-voltage hysteresis ΔVTH is as small as 0.1 V for a gate voltage swing up to –10 V, which is among the best results reported in the literature. The results indicate that optimizing the Si/N stoichiometry of LPCVD-SiNx is a promising approach to improve the device performance of GaN p-MISFET.-
Keywords:
- p-channel,
- GaN p-FET,
- LPCVD,
- channel mobility,
- hole mobility,
- enhancement-mode
-
References
[1] Teo K H, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902 doi: 10.1063/5.0061555[2] Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap. J Phys D: Appl Phys, 2018, 51, 163001 doi: 10.1088/1361-6463/aaaf9d[3] Trescases O, Murray S K, Jiang W L, et al. GaN power ICs: Reviewing strengths, gaps, and future directions. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 27.4.1 doi: 10.1109/IEDM13553.2020.9371918[4] Dan K. Monolithic GaN power IC technology drives wide bandgap adoption. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 27.5.1 doi: 10.1109/IEDM13553.2020.9372021[5] Hahn H, Reuters B, Kotzea S, et al. First monolithic integration of GaN-based enhancement mode n-channel and p-channel heterostructure field effect transistors. 72nd Device Research Conference, 2014, 259 doi: 10.1109/DRC.2014.6872396[6] Nakajima A, Nishizawa S I, Ohashi H, et al. One-chip operation of GaN-based P-channel and N-channel heterojunction field effect transistors. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014, 241 doi: 10.1109/ISPSD.2014.6856021[7] Zheng Z Y, Zhang L, Song W J, et al. Gallium nitride-based complementary logic integrated circuits. Nat Electron, 2021, 4, 595 doi: 10.1038/s41928-021-00611-y[8] Niu X R, Hou B, Yang L, et al. Analytical model on the threshold voltage of p-channel heterostructure field-effect transistors on a GaN-based complementary circuit platform. IEEE Trans Electron Devices, 2022, 69, 57 doi: 10.1109/TED.2021.3129712[9] Raj A, Krishna A, Hatui N, et al. Demonstration of a GaN/AlGaN superlattice-based p-channel FinFET with high ON-current. IEEE Electron Device Lett, 2020, 41, 220 doi: 10.1109/LED.2019.2963428[10] Bader S J, Chaudhuri R, Nomoto K, et al. Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas. IEEE Electron Device Lett, 2018, 39, 1848 doi: 10.1109/LED.2018.2874190[11] Raj A, Krishna A, Hatui N, et al. GaN/AlGaN superlattice based E-mode p-channel MES-FinFET with regrown contacts and >50 mA/mm on-current. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 5.4.1 doi: 10.1109/IEDM19574.2021.9720496[12] Chowdhury N, Xie Q Y, Palacios T. Tungsten-gated GaN/AlGaN p-FET with Imax > 120 mA/mm on GaN-on-Si. IEEE Electron Device Lett, 2022, 43, 545 doi: 10.1109/LED.2022.3149659[13] Chowdhury N, Xie Q Y, Palacios T. Self-aligned E-mode GaN p-channel FinFET with ION > 100 mA/mm and ION/IOFF > 107. IEEE Electron Device Lett, 2022, 43, 358 doi: 10.1109/LED.2022.3140281[14] Du H H, Liu Z H, Hao L, et al. High-performance E-mode p-channel GaN FinFET on silicon substrate with high ION/IOFF and high threshold voltage. IEEE Electron Device Lett, 2022, 43, 705 doi: 10.1109/LED.2022.3155152[15] Zheng Z Y, Song W J, Zhang L, et al. High ION and ION/IOFF ratio enhancement−mode buried ratio enhancement−mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Lett, 2020, 41, 26 doi: 10.1109/LED.2019.2954035[16] Yin Y D, Lee K B. High-performance enhancement-mode p-channel GaN MISFETs with steep subthreshold swing. IEEE Electron Device Lett, 2022, 43, 533 doi: 10.1109/LED.2022.3152308[17] Chowdhury N, Lemettinen J, Xie Q Y, et al. P-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Device Lett, 2019, 40, 1036 doi: 10.1109/LED.2019.2916253[18] Chowdhury N, Xie Q Y, Yuan M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett, 2020, 41, 820 doi: 10.1109/LED.2020.2987003[19] Schroder D K. Semiconductor material and device characterization. Wiley-IEEE Press, 2005[20] Makino T. Composition and structure control by source gas ratio in LPCVD SiNx. J Electrochem Soc, 1983, 130, 450 doi: 10.1149/1.2119729[21] Zhu L Y, Zhou Q, Chen K L, et al. The modulation effect of LPCVD-SixNy stoichiometry on 2-DEG characteristic of UTB AlGaN/GaN heterostructure. IEEE Trans Electron Devices, 2022, 69, 4828 doi: 10.1109/TED.2022.3188609[22] Jin H, Jiang Q M, Huang S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage. IEEE Electron Device Lett, 2022, 43, 1191 doi: 10.1109/LED.2022.3184998[23] Zheng Z Y, Zhang L, Song W J, et al. Threshold voltage instability of enhancement-mode GaN buried p-channel MOSFETs. IEEE Electron Device Lett, 2021, 42, 1584 doi: 10.1109/LED.2021.3114776[24] Zhang L, Zheng Z Y, Cheng Y, et al. SiN/in-situ-GaON staggered gate stack on p-GaN for enhanced stability in buried-channel GaN p-FETs. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 5.3.1 doi: 10.1109/IEDM19574.2021.9720653[25] Poncé S, Jena D, Giustino F. Hole mobility of strained GaN from first principles. Phys Rev B, 2019, 100, 085204 doi: 10.1103/PhysRevB.100.085204[26] Siddique A, Ahmed R, Anderson J, et al. Effect of reactant gas stoichiometry of in-situ SiNx passivation on structural properties of MOCVD AlGaN/GaN HEMTs. J Cryst Growth, 2019, 517, 28 doi: 10.1016/j.jcrysgro.2019.03.020 -
Proportional views