Citation: |
Shuyu Wu, Rongrong Cao, Hao Jiang, Yu Li, Xumeng Zhang, Yang Yang, Yan Wang, Yingfen Wei, Qi Liu. Reliable ferroelectricity down to cryogenic temperature in wake-up free Hf0.5Zr0.5O2 thin films by thermal atomic layer deposition[J]. Journal of Semiconductors, 2024, 45(3): 032301. doi: 10.1088/1674-4926/45/3/032301
****
S Y Wu, R R Cao, H Jiang, Y Li, X M Zhang, Y Yang, Y Wang, Y F Wei, Q Liu. Reliable ferroelectricity down to cryogenic temperature in wake-up free Hf0.5Zr0.5O2 thin films by thermal atomic layer deposition[J]. J. Semicond, 2024, 45(3): 032301. doi: 10.1088/1674-4926/45/3/032301
|
Reliable ferroelectricity down to cryogenic temperature in wake-up free Hf0.5Zr0.5O2 thin films by thermal atomic layer deposition
DOI: 10.1088/1674-4926/45/3/032301
More Information
-
Abstract
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics. In this work, TiN/Hf0.5Zr0.5O2/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature (300 K) to cryogenic temperature (30 K). We observe a consistent decrease in permittivity (εr) and a progressive increase in coercive electric field (Ec) as temperatures decrease. Our investigation reveals exceptional stability in the double remnant polarization (2Pr) of our ferroelectric thin films across a wide temperature range. Specifically, at 30 K, a 2Pr of 36 µC/cm2 under an applied electric field of 3.0 MV/cm is achieved. Moreover, we observed a reduced fatigue effect at 30 K in comparison to 300 K. The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO2 based ferroelectric thin films for cryo-electronics applications. -
References
[1] Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99, 102903 doi: 10.1063/1.3634052[2] Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580, 478 doi: 10.1038/s41586-020-2208-x[3] Banerjee W, Kashir A, Kamba S. Hafnium oxide (HfO2)–A multifunctional oxide: A review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small, 2022, 18, 2107575 doi: 10.1002/smll.202107575[4] Khan A I, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron, 2020, 3, 588 doi: 10.1038/s41928-020-00492-7[5] Cao R R, Zhang X M, Liu S, et al. Compact artificial neuron based on anti-ferroelectric transistor. Nat Commun, 2022, 13, 7018 doi: 10.1038/s41467-022-34774-9[6] https://trc.nist.gov/cryogenics[7] Müller J, Böscke T S, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett, 2012, 12, 4318 doi: 10.1021/nl302049k[8] Henry M D, Smith S W, Lewis R M, et al. Stabilization of ferroelectric phase of Hf0.58Zr0.42O2 on NbN at 4 K. Appl Phys Lett, 2019, 114, 092903 doi: 10.1063/1.5052435[9] Hur J, Luo Y C, Wang Z, et al. Characterizing ferroelectric properties of Hf0.5Zr0.5O2 from deep-cryogenic temperature (4 K) to 400 K. IEEE J Explor Solid State Comput Devices Circuits, 2021, 7, 168 doi: 10.1109/JXCDC.2021.3130783[10] Park M H, Chung C C, Schenk T, et al. Origin of temperature-dependent ferroelectricity in Si-doped HfO2. Adv Elect Materials, 2018, 4, 1700489 doi: 10.1002/aelm.201700489[11] Zhou D Y, Guan Y, Vopson M M, et al. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films. Acta Mater, 2015, 99, 240 doi: 10.1016/j.actamat.2015.07.035[12] Wang D, Wang J L, Li Q A, et al. Stable ferroelectric properties of Hf0.5Zr0.5O2 thin films within a broad working temperature range. Jpn J Appl Phys, 2019, 58, 090910 doi: 10.7567/1347-4065/ab3844[13] Pešić M, Fengler F P G, Larcher L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Materials, 2016, 26, 4601 doi: 10.1002/adfm.201600590[14] Adkins J W, Fina I, Sánchez F, et al. Thermal evolution of ferroelectric behavior in epitaxial Hf0.5Zr0.5O2. Appl Phys Lett, 2020, 117, 142902 doi: 10.1063/5.0015547[15] Liu H, Yang Q Y, Jin C J, et al. Mobile-ionic FETs with ultra-scaled amorphous dielectric achieving ferroelectric behaviors and sub-kT/q swing with temperature down to 77 K. Sci China Inf Sci, 2023, 67, 119401 doi: 10.1007/s11432-022-3721-0[16] Jiang P F, Luo Q, Xu X X, et al. Wake-up effect in HfO2-based ferroelectric films. Adv Elect Materials, 2021, 7, 2000728 doi: 10.1002/aelm.202000728[17] Silva J P B, Sekhar K C, Negrea R F, et al. Progress and perspective on different strategies to achieve wake-up-free ferroelectric hafnia and zirconia-based thin films. Appl Mater Today, 2022, 26, 101394 doi: 10.1016/j.apmt.2022.101394[18] Park M H, Kim H J, Kim Y J, et al. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J Mater Chem C, 2015, 3, 6291 doi: 10.1039/C5TC01074H[19] Jiang H, Bhuiyan M A, Liu Z, et al. A study of BEOL processed Hf0.5Zr0.5O2- based ferroelectric capacitors and their potential for automotive applications. 2020 IEEE International Memory Workshop (IMW), 2020 doi: 10.1109/IMW48823.2020.9108113[20] Park M H, Kim H J, Kim Y J, et al. Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv Mater, 2016, 28, 7956 doi: 10.1002/adma.201602787[21] Hsiang K Y, Lee J Y, Lou Z F, et al. Cryogenic endurance of anti-ferroelectric and ferroelectric Hf1-xZrxO2 for quantum computing applications. 2023 IEEE International Reliability Physics Symposium (IRPS), 2023 doi: 10.1109/IRPS48203.2023.10118311[22] Chen J, Jin C, Yu X, et al. Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO2-based thin films. IEEE Trans Electron Devices, 2022, 69(9), 5297 doi: 10.1109/TED.2022.3190256 -
Proportional views