Citation: |
Zhenwu Liu, Li Zhong, Suping Liu, Xiaoyu Ma. 975 nm multimode semiconductor lasers with high-order Bragg diffraction gratings[J]. Journal of Semiconductors, 2024, 45(3): 032401. doi: 10.1088/1674-4926/45/3/032401
****
Z W Liu, L Zhong, S P Liu, X Y Ma. 975 nm multimode semiconductor lasers with high-order Bragg diffraction gratings[J]. J. Semicond, 2024, 45(3): 032401. doi: 10.1088/1674-4926/45/3/032401
|
975 nm multimode semiconductor lasers with high-order Bragg diffraction gratings
DOI: 10.1088/1674-4926/45/3/032401
More Information
-
Abstract
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calculated using the 2D finite difference time domain (FDTD) algorithm and the scattering matrix method (SMM). The periods and etch depth of the grating parameters have been optimized. A board area laser diode (BA-LD) with high-order diffraction gratings has been designed and fabricated. At output powers up to 10.5 W, the measured spectral width of full width at half maximum (FWHM) is less than 0.5 nm. The results demonstrate that the designed high-order surface gratings can effectively narrow the spectral width of multimode semiconductor lasers at high output power. -
References
[1] Sohail M, Khan N Z, Chen T H, et al. 1.3 kW continuous wave output power of ytterbium-doped large-core fiber laser. ECS J Solid State Sci Technol, 2021, 10(2), 026005 doi: 10.1149/2162-8777/abe6f6[2] Mirza J, Ghafoor S, Kousar A, et al. Design of a continuous-wave ytterbium-doped tunable fiber laser pump for thulium-doped fiber amplifiers. Arab J Sci Eng, 2022, 47(3), 3541 doi: 10.1007/s13369-021-06440-7[3] Anashkina E A, Andrianov A V, Dorofeev V V, et al. Development of infrared fiber lasers at 1555 nm and at 2800 nm based on Er-doped zinc-tellurite glass fiber. J Non Cryst Solids, 2019, 525, 119667 doi: 10.1016/j.jnoncrysol.2019.119667[4] Gu Y Y, Fu Y M, Lu H, et al. The theoretical calculation and output characteristic analysis of Yb doped fiber laser. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, 1745 doi: 10.1109/ITOEC49072.2020.9141632[5] Ma X Y, Zhang N L, Zhong L, et al. Research progress of high power semiconductor laser pump source. High Power Laser And Particle Beams, 2020, 32(12), 121010 doi: 10.11884/HPLPB202032.200236[6] Lang X K, Jia P, Chen Y Y, et al. Advances in narrow linewidth diode lasers. Sci China Inf Sci, 2019, 62, 1 doi: 10.1007/s11432-019-9870-0[7] Jiang L L, Achtenhagen M, Amarasinghe N V, et al. High-power DBR laser diodes grown in a single epitaxial step. Novel in-Plane Semiconductor Lasers VIII, 2009, 7230, 283 doi: 10.1117/12.807872[8] Bachmann F G. High-power diode laser technology and applications. High-Power Lasers in Manufacturing, 2000, 3888, 394 doi: 10.1117/12.377093[9] Paoletti R, Coriasso C, Meneghini G, et al. Wavelength-stabilized DBR high-power diode laser. J Phys Photonics, 2020, 2, 014010 doi: 10.1088/2515-7647/ab6712[10] Lang X K, Jia P, Qin L, et al. 980 nm high-power tapered semiconductor laser with high order gratings. Journal of Infrared and Millimeter Waves, 2021, 40, 721 doi: 10.11972/j.issn.1001-9014.2021.06.003[11] Zolotarev V V, Leshko A Y, Pikhtin N A, et al. Integrated high-order surface diffraction gratings for diode lasers. Quantum Electron, 2015, 45(12), 1091 doi: 10.1070/QE2015v045n12ABEH015871[12] Zolotarev V V, Yu Leshko A, Shamakhov V V, et al. Continuous wave and pulse (2–100 ns) high power AlGaAs/GaAs laser diodes (1050 nm) based on high and low reflective 13th order DBR. Semicond Sci Technol, 2020, 35(1), 015009 doi: 10.1088/1361-6641/ab5435[13] Sullivan D M. Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013, 1, 1[14] Rumpf R C. Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Prog Electromagn Res B, 2011, 35, 241 doi: 10.2528/PIERB11083107[15] Palmer C, Loewen E G. Diffraction grating handbook. New York: Newport Corporation, 2005[16] Man Y X, Zhong L, Ma X Y, et al. 975 nm semiconductor lasers with ultra-low internal optical loss. Acta Opt Sin, 2020, 40(19), 1914001 doi: 10.3788/AOS202040.1914001[17] Adachi S. GaAs, AlAs, and AlxGa1− xAs: Material parameters for use in research and device applications. J Appl Phys, 1985, 58(3), R1 doi: 10.1063/1.336070[18] Seifert S, Runge P. Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region. Opt Mater Express, 2016, 6, 629 doi: 10.1364/OME.6.000629[19] Sun W, Zhao G Y, Lu Q Y, et al. High-speed directly modulated lasers based on high-order slotted surface gratings. Physics and Simulation of Optoelectronic Devices XXV, 2017, 10098, 166 doi: 10.1117/12.2254127[20] Streifer W, Scifres D, Burnham R. Coupled wave analysis of DFB and DBR lasers. IEEE J Quantum Electron, 1977, 13, 134 doi: 10.1109/JQE.1977.1069328[21] Kang J H, Wenzel H, Freier E, et al. Continuous-wave operation of 405 nm distributed Bragg reflector laser diodes based on GaN using 10th-order surface gratings. Photon Res, 2022, 10(5), 1157 doi: 10.1364/PRJ.444947 -
Proportional views