Processing math: 100%
J. Semicond. > 2024, Volume 45 > Issue 4 > 041701

REVIEWS

Light-emitting devices based on atomically thin MoSe2

Xinyu Zhang1, Xuewen Zhang1, Hanwei Hu1, Vanessa Li Zhang2, Weidong Xiao1, Guangchao Shi1, Jingyuan Qiao1, Nan Huang1, Ting Yu2, 3, and Jingzhi Shang1,

+ Author Affiliations

 Corresponding author: Ting Yu, yu.ting@whu.edu.cn; Jingzhi Shang, iamjzshang@nwpu.edu.cn

DOI: 10.1088/1674-4926/45/4/041701

PDF

Turn off MathJax

Abstract: Atomically thin MoSe2 layers, as a core member of the transition metal dichalcogenides (TMDs) family, benefit from their appealing properties, including tunable band gaps, high exciton binding energies, and giant oscillator strengths, thus providing an intriguing platform for optoelectronic applications of light-emitting diodes (LEDs), field-effect transistors (FETs), single-photon emitters (SPEs), and coherent light sources (CLSs). Moreover, these MoSe2 layers can realize strong excitonic emission in the near-infrared wavelengths, which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection, quantum computing, and quantum information processing. Herein, we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe2 layers. Firstly, we introduce recent developments in excitonic emission features from atomically thin MoSe2 and their dependences on typical physical fields. Next, we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe2 coupled to the diverse forms of optical microcavities. Then, we highlight the promising applications of LEDs, SPEs, and CLSs based on MoSe2 and their heterostructures. Finally, we summarize the challenges and opportunities for high-quality emission of MoSe2 and high-performance light-emitting devices.

Key words: MoSe2light−matter interactionexcitonpolaritonlight-emitting device

Electrostatic discharge (ESD) phenomena are inevitable during the processes of manufacturing,testing and using electronic products. With the continuously scaled-down CMOS technology,ESD damage to modern integrated circuits is becoming more and more serious[1]. Silicon controlled rectifiers (SCR) are known as efficient ESD protection devices since they show the relatively highest ESD robustness in the smallest layout area. In order to improve the ESD protection efficiency of traditional one-directional SCRs,various dual-directional SCR (DDSCR) devices have been proposed in the past decade[2, 3, 4, 5]. DDSCRs not only possess as strong protection capability as one-directional SCRs,but also can realize dual-directional ESD protection with a significantly reduced chip area. However,the conventional DDSCRs still have some problems such as a low holding voltage (Vh) and weak latch-up immunity,limiting their practical applications as effective ESD protection devices[3, 4, 5, 6, 7, 8, 10, 11].

In order to increase the Vh and reduce the latch-up risk of DDSCRs,we design a novel DDSCR device with an embedded PNP structure (DDSCR-PNP) in this paper. Experimental devices are fabricated in a 0.35 μm Bipolar-CMOS-DMOS (BCD) process and investigated by transmission line pulse (TLP) tests and Sentaurus simulations. The results indicate that the DDSCR-PNP has a much higher Vh and a lower leakage current (IL) than conventional ones.

Cross sections and equivalent circuits under one-directional ESD stress of the conventional DDSCR and the proposed DDSCR-PNP with the same length and width are shown in Figures 1(a) and 1(b),respectively. Compared to the floating P well of DDSCR,the P well of DDSCR-PNP is directly grounded.

Figure  Fig1.  Cross sections and equivalent circuits of (a) DDSCR and (b) DDSCR-PNP,respectively.

The discharge path of DDSCR under one-directional ESD stress is shown in Figure1(a). When a positive ESD stress is applied between Node 1 and Node 2 of the DDSCR,the avalanche breakdown occurs at the interface of the PN junction formed by the N well and P well,generating a large avalanche current,which helps to turn on the parasitic NPN transistor firstly. Then,the parasitic PNP_1 is turned on soon due to the positive feedback effect. Finally,the ESD current is discharged from Node 1 to Node 2 through Path 1 shown in Figure1(a),resulting from the turned-on SCR. The positive feedback of those bipolar-junction transistors (BJTs) in DDSCR causes a strong current discharge capability but a low holding voltage.

Compared to the DDSCR,the discharge paths in DDSCR-PNP are shown in Figure1(b). When a positive ESD pulse is stressed between Node 1 and Node 2 of the DDSCR-PNP,a similar avalanche breakdown mechanism occurs. So the trigger voltage (Vt) of both devices will be almost the same. The only difference is that the DDSCR-PNP has an additional turned-on PNP_2,which helps to clamp the voltage between Node 1 and Node 2 by weakening the positive feedback of BJTs. As a result,there are two discharge paths Path 1 and Path 2 in parallel,so the DDSCR-PNP can exhibit higher Vh than the conventional DDSCR. In addition,when the DDSCR-PNP is used for dual-directional ESD protection,the P+ implantation in the P well should be grounded through a reverse diode to avoid the large leakage current resulted from a negative ESD pulse happening on Node 1 or Node 2.

In order to analyse the ESD characteristics of DDSCR and DDSCR-PNP,experimental devices with the same layout area (W = 73 μm ,L = 128 μm) are fabricated in a 0.35 μm BCD process and measured by a Barth 4002 TLP test system. A series of TLP pulses with 10 ns rising time,a 100 ns pulse width and an internal of 1 s are stressed on the devices for obtaining the TLP current--voltage (I-V) curves. Moreover,during each TLP pulse internal,a DC bias about 1.1 times of the operating voltage of the kernel circuit is stressed on the devices for obtaining the leakage current--voltage (ILV) curves.

Typical TLP testing results of devices with the same device width and P well width (12 μm) are shown in Figure2. With the increasing TLP pulse voltage,the off state (from A to B),the snapback state (from B to C) and the holding state (from C to D) are sequentially shown in both devices,as marked in the I--V curve of DDSCR-PNP. Before the thermal breakdown,the IL of DDSCR-PNP and DDSCR maintains in the order of 10-9 A and 10-6 A,respectively. When the TLP pulse current is increased to 4.5 A,the IL of DDSCR-PNP rises to the order of 10-3 A,indicating the failure of DDSCR-PNP. When the TLP pulse current is further increased to 8.5 A,the DDSCR fails too.

Figure  Fig2.  TLP I-V curves of DDSCR and DDSCR-PNP.

According to the critical point between the off and snapback states,the Vt of both DDSCR and DDSCR-PNP are about 65 V. The DDSCR-PNP has a lower second failure current (It2) than the DDSCR,but it is still robust enough (It2 4.5~A). On the other hand,the DDSCR-PNP has a much higher Vh (25.6 V) than the DDSCR (12.8 V),so the latch-up immunity of DDSCR-PNP is remarkably enhanced. Moreover,the DDSCR-PNP has a much smaller IL (1.2 × 10-9 A) than the DDSCR (4.9 × 10-6 A),resulting in lower power consumption and miss-trigger risk.

Then,a series of DDSCR-PNP devices (named as DUT1,DUT2,DUT3) with different P well widths (12.6 μm,11.6 μm,10.6 μm) are fabricated and measured. The TLP testing results are shown in Figure3. With the increasing P well width,the Vh of DUT3,DUT2,DUT1 increases from 22.6 to 26.8 V. However,when the P well width increases to 12.6 μm,IL jumps to the order of 10-7 A and shows obvious fluctuations,indicating that the device is working in an unstable state.

Figure  Fig3.  TLP I-V curves of DDSCR-PNP devices with different P well widths.

The experiment results can be analyzed by comparing DDSCR-PNP with DDSCR. In the DDSCR,the collector current IC of the vertical PNP_1 contributes a lot to IL. In the DDSCR-PNP,the lateral PNP_2 conducts a large part of ESD current,and the ESD current across the vertical PNP_1 is significantly reduced,helping to suppress the increase of IL. Therefore,IL decreases from 4.9 × 107 A (DDSCR) to 1.2 × 10-9 A (DDSCR-PNP). However,the conducting capability of the lateral PNP_2 is gradually weakened with the increasing P well width,which in contrary results in an increasing current through the vertical PNP_1. As a result,IL increases with the increasing P well width,and even the unstable state appears finally.

In order to understand their different working mechanisms,DDSCR and DDSCR-PNP are simulated by using Sentaurus. Figure4 shows the distributions of total current density (J) in the two devices under an ESD current of 1× 10-3 A. It can be clearly seen that,an SCR current discharge path formed by P+/N well/P well/N well/N+ appears in both DDSCR and DDSCR-PNP,but the DDSCR-PNP has an additional PNP current discharge path formed by the P+/N well/P well. The remarkable merit of the PNP current discharge path parallel with the SCR path is to enhance the voltage clamping capability[9],thus,the latch-up immunity of DDSCR-PNP can be greatly improved. Therefore,the simulation result confirms the theoretical analysis made in Section 2.

Figure  Fig4.  Total current density distributions in DDSCR and DDSCR-PNP under an ESD current pulse of 1 × 10-3 A.

Furthermore,the reasons leading to the different IL in DDSCR and DDSCR-PNP are also studied by simulation. Figure5 shows the distributions of the total current density in the two devices under an ESD stress of 1 × 10-6A.ItcanbeseenthatthecurrentismainlydischargedfromNode1tothesubstratethroughtheverticalPNP1intheDDSCR,whileintheDDSCRPNP,thecurrentismainlydischargedbythelateralPNP2,andthecurrentdischargedthroughtheverticalPNP1issignificantlyweakened.Thus,itisconfirmedthatthelateralPNP2canhelptodecreasethecurrentinjectedfromNode1intothePsubstrate,resultinginthegreatlyreducedI_{\rm L}$ in the DDSCR-PNP.

Figure  Fig5.  Total current density distributions in DDSCR and DDSCR-PNP under an ESD current pulse of 1 × 10-6 A.

A novel DDSCR-PNP device has been proposed and verified in a 0.35 μm BCD process. The ESD performances of the DDSCR-PNP and the conventional DDSCR are studied and compared by TLP tests and simulations. The TLP test results show that the DDSCR-PNP has a higher holding voltage about 25.6 V and a lower leakage current about 1 × 10-9 A,and thus a better latch-up immunity than the DDSCR. The mechanism analyses for increased holding voltage and decreased leakage current in DDSCR-PNP are confirmed by simulation results. The proposed DDSCR-PNP provides a good ESD protection solution for high-voltage integrated circuits.



[1]
Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33
[2]
Wu X, Chen X Y, Yang R X, et al. Recent advances on tuning the interlayer coupling and properties in van der waals heterostructures. Small, 2022, 18(15), 2105877 doi: 10.1002/smll.202105877
[3]
Ou H, Matsuoka H, Tempia J, et al. Spatial control of dynamic p-i-n junctions in transition metal dichalcogenide light-emitting devices. ACS Nano, 2021, 15(8), 12911 doi: 10.1021/acsnano.1c01242
[4]
Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r
[5]
Du W, Yu P, Zhu J T, et al. An ultrathin MoSe2 photodetector with near-perfect absorption. Nanotechnology, 2020, 31(22), 225201 doi: 10.1088/1361-6528/ab746f
[6]
Wen W, Wu L S, Yu T. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater Lett, 2020, 2(10), 1328 doi: 10.1021/acsmaterialslett.0c00277
[7]
Fang H H, Han B, Robert C, et al. Control of the exciton radiative lifetime in van der waals heterostructures. Phys Rev Lett, 2019, 123(6), 067401 doi: 10.1103/PhysRevLett.123.067401
[8]
Zhang L, Wu F C, Hou S C, et al. Van der waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 2021, 591(7848), 61 doi: 10.1038/s41586-021-03228-5
[9]
Jia S A, Jin Z H, Zhang J, et al. Lateral monolayer MoSe2-WSe2 p-n heterojunctions with giant built-in potentials. Small, 2020, 16(34), 2002263 doi: 10.1002/smll.202002263
[10]
Sun J W, Hu H T, Pan D, et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity. Nano Lett, 2020, 20(7), 4953 doi: 10.1021/acs.nanolett.0c01019
[11]
Henck H, Mauro D, Domaretskiy D, et al. Light sources with bias tunable spectrum based on van der waals interface transistors. Nat Commun, 2022, 13(1), 3917 doi: 10.1038/s41467-022-31605-9
[12]
Chen Y Y, Liu Z Y, Li J Z, et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8), 10258 doi: 10.1021/acsnano.0c03624
[13]
Chen Y Y, Liu Z Y, Li J Z, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343
[14]
Yao W D, Yang D, Chen Y Y, et al. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett, 2022, 22(17), 7230 doi: 10.1021/acs.nanolett.2c02742
[15]
Horng J, Stroucken T, Zhang L, et al. Observation of interlayer excitons in MoSe2 single crystals. Phys Rev B, 2018, 97(24), 241404 doi: 10.1103/PhysRevB.97.241404
[16]
Joe A Y, Jauregui L A, Pistunova K, et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys Rev B, 2021, 103(16), L161411 doi: 10.1103/PhysRevB.103.L161411
[17]
Huang C M, Wu S F, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 2014, 13(12), 1096 doi: 10.1038/nmat4064
[18]
Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 2015, 6(1), 6242 doi: 10.1038/ncomms7242
[19]
Jin Y, Keum D H, An S J, et al. A van der waals homojunction: Ideal p-n diode behavior in MoSe2. Adv Mater, 2015, 27(37), 5534 doi: 10.1002/adma.201502278
[20]
Yu L, Deng M D, Zhang J L, et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett, 2021, 21(6), 2376 doi: 10.1021/acs.nanolett.0c04282
[21]
Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 2016, 108(14), 142101 doi: 10.1063/1.4945268
[22]
Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785), 80 doi: 10.1038/s41586-019-1779-x
[23]
Anton-Solanas C, Waldherr M, Klaas M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat Mater, 2021, 20(9), 1233 doi: 10.1038/s41563-021-01000-8
[24]
Li C Y, Wang Q F, Diao H, et al. Enhanced photoluminescence of monolayer MoSe2 in a double resonant plasmonic nanocavity with fano resonance and mode matching. Laser Photonics Rev, 2022, 16(2), 2100199 doi: 10.1002/lpor.202100199
[25]
Péchou R, Jia S A, Rigor J, et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics, 2020, 7(11), 3061 doi: 10.1021/acsphotonics.0c01101
[26]
Zhang Y X, Chen W, Fu T, et al. Simultaneous surface-enhanced resonant raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension. Nano Lett, 2019, 19(9), 6284 doi: 10.1021/acs.nanolett.9b02425
[27]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6(1), 8579 doi: 10.1038/ncomms9579
[28]
Kumar P, Lynch J, Song B K, et al. light−matter coupling in large-area van der waals superlattices. Nat Nanotechnol, 2022, 17(2), 182 doi: 10.1038/s41565-021-01023-x
[29]
Paik E Y, Zhang L, Hou S C, et al. High quality factor microcavity for van der waals semiconductor polaritons using a transferrable mirror. Adv Opt Mater, 2023, 11(1), 2201440 doi: 10.1002/adom.202201440
[30]
Park S, Kim D, Seo M K. Plasmonic photonic crystal mirror for long-lived interlayer exciton generation. ACS Photonics, 2021, 8(12), 3619 doi: 10.1021/acsphotonics.1c01243
[31]
Tanoh A O A, Alexander-Webber J, Fan Y, et al. Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands. Nanoscale Adv, 2021, 3(14), 4216 doi: 10.1039/D0NA01014F
[32]
Han H V, Lu A Y, Lu L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1), 1454 doi: 10.1021/acsnano.5b06960
[33]
Lundt N, Maryński A, Cherotchenko E, et al. Monolayered MoSe2: A candidate for room temperature polaritonics. 2D Mater, 2017, 4(1), 015006 doi: 10.1088/2053-1583/4/1/015006
[34]
Gillard D J, Genco A, Ahn S, et al. Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Mater, 2021, 8(1), 011002 doi: 10.1088/2053-1583/abc5a1
[35]
Wurdack M, Lundt N, Klaas M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun, 2017, 8(1), 259 doi: 10.1038/s41467-017-00155-w
[36]
Waldherr M, Lundt N, Klaas M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat Commun, 2018, 9(1), 3286 doi: 10.1038/s41467-018-05532-7
[37]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277
[38]
Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 2012, 12(11), 5576 doi: 10.1021/nl302584w
[39]
Shi Y F, Hua C X, Li B, et al. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Funct Mater, 2013, 23(14), 1832 doi: 10.1002/adfm.201202144
[40]
Schneider C, Glazov M M, Korn T, et al. Two-dimensional semiconductors in the regime of strong light−matter coupling. Nat Commun, 2018, 9(1), 2695 doi: 10.1038/s41467-018-04866-6
[41]
Ye Z L, Cao T, O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517), 214 doi: 10.1038/nature13734
[42]
Echeverry J P, Urbaszek B, Amand T, et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 2016, 93(12), 121107 doi: 10.1103/PhysRevB.93.121107
[43]
Hao K, Specht J F, Nagler P, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat Commun, 2017, 8(1), 15552 doi: 10.1038/ncomms15552
[44]
Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12(3), 207 doi: 10.1038/nmat3505
[45]
Rivera P, Yu H Y, Seyler K L, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotechnol, 2018, 13(11), 1004 doi: 10.1038/s41565-018-0193-0
[46]
Datta B, Khatoniar M, Deshmukh P, et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nat Commun, 2022, 13(1), 6341 doi: 10.1038/s41467-022-33940-3
[47]
Pei J J, Yang J, Wang X B, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017, 11(7), 7468 doi: 10.1021/acsnano.7b03909
[48]
Godde T, Schmidt D, Schmutzler J, et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 2016, 94(16), 165301 doi: 10.1103/PhysRevB.94.165301
[49]
Wang J A, Huang J H, Li Y H, et al. Radiative and non-radiative exciton recombination processes in a chemical vapor deposition-grown MoSe2 film. J Phys Chem C, 2022, 126(36), 15319 doi: 10.1021/acs.jpcc.2c04550
[50]
Yu Y F, Yu Y L, Xu C, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 2016, 26(26), 4733 doi: 10.1002/adfm.201600418
[51]
Wierzbowski J, Klein J, Sigger F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci Rep, 2017, 7(1), 12383 doi: 10.1038/s41598-017-09739-4
[52]
Grzeszczyk M, Molas M R, Nogajewski K, et al. The effect of metallic substrates on the optical properties of monolayer MoSe2. Sci Rep, 2020, 10(1), 4981 doi: 10.1038/s41598-020-61673-0
[53]
Ciarrocchi A, Unuchek D, Avsar A, et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der waals heterostructures. Nat Photonics, 2019, 13(2), 131 doi: 10.1038/s41566-018-0325-y
[54]
Hagel J, Brem S, Malic E. Electrical tuning of moiré excitons in MoSe2 bilayers. 2D Mater, 2023, 10(1), 014013 doi: 10.1088/2053-1583/aca916
[55]
Lu Z G, Rhodes D, Li Z P, et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2. 2D Mater, 2020, 7(1), 015017 doi: 10.1088/2053-1583/ab5614
[56]
Robert C, Han B, Kapuscinski P, et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat Commun, 2020, 11(1), 4037 doi: 10.1038/s41467-020-17608-4
[57]
Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 2013, 4(1), 1474 doi: 10.1038/ncomms2498
[58]
Tang Y H, Gu J, Liu S, et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat Nanotechnol, 2021, 16(1), 52 doi: 10.1038/s41565-020-00783-2
[59]
Shim G W, Yoo K, Seo S B, et al. Large-area single-layer MoSe2 and its van der waals heterostructures. ACS Nano, 2014, 8(7), 6655 doi: 10.1021/nn405685j
[60]
Du W N, Zhang S A, Zhang Q, et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 2019, 31(45), 1804894 doi: 10.1002/adma.201804894
[61]
Zhao L Y, Shang Q Y, Li M L, et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res, 2021, 14(6), 1937 doi: 10.1007/s12274-020-3073-5
[62]
Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 1946, 69, 37 doi: 10.1103/PhysRev.69.37
[63]
Shang J Z, Cong C X, Wang Z L, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun, 2017, 8(1), 543 doi: 10.1038/s41467-017-00743-w
[64]
Lozano G, Rodriguez S R, Verschuuren M A, et al. Metallic nanostructures for efficient LED lighting. Light Sci Appl, 2016, 5(6), e16080 doi: 10.1038/lsa.2016.80
[65]
Schuler B, Cochrane K A, Kastl C, et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci Adv, 2020, 6(38), eabb5988 doi: 10.1126/sciadv.abb5988
[66]
Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 2005, 95(1), 013904 doi: 10.1103/PhysRevLett.95.013904
[67]
Wang Z, Dong Z G, Gu Y H, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 2016, 7(1), 11283 doi: 10.1038/ncomms11283
[68]
Pelton M. Modified spontaneous emission in nanophotonic structures. Nat Photonics, 2015, 9(7), 427 doi: 10.1038/nphoton.2015.103
[69]
Kim J H, Lee H S, An G H, et al. Dielectric nanowire hybrids for plasmon-enhanced light−matter interaction in 2D semiconductors. ACS Nano, 2020, 14(9), 11985 doi: 10.1021/acsnano.0c05158
[70]
Husko C, Kang J, Moille G, et al. Silicon-phosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett, 2018, 18(10), 6515 doi: 10.1021/acs.nanolett.8b03037
[71]
Gerard J M, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J Light Technol, 1999, 17(11), 2089 doi: 10.1109/50.802999
[72]
Lepeshov S, Krasnok A, Alù A. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. Nanotechnology, 2019, 30(25), 254004 doi: 10.1088/1361-6528/ab0daf
[73]
Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett, 1992, 69(23), 3314 doi: 10.1103/PhysRevLett.69.3314
[74]
Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation. Rev Mod Phys, 2010, 82(2), 1489 doi: 10.1103/RevModPhys.82.1489
[75]
Lackner L, Dusel M, Egorov O A, et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat Commun, 2021, 12(1), 4933 doi: 10.1038/s41467-021-24925-9
[76]
Wurdack M, Estrecho E, Todd S, et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat Commun, 2021, 12(1), 5366 doi: 10.1038/s41467-021-25656-7
[77]
Jiang Z J, Ren A, Yan Y L, et al. Exciton-polaritons and their bose-einstein condensates in organic semiconductor microcavities. Adv Mater, 2022, 34(4), 2106095 doi: 10.1002/adma.202106095
[78]
Munkhbat B, Baranov D G, Stührenberg M, et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics, 2019, 6(1), 139 doi: 10.1021/acsphotonics.8b01194
[79]
Shang J Z, Zhang X Y, Zhang V L, et al. Exciton-photon interactions in two-dimensional semiconductor microcavities. ACS Photonics, 2023, 10, 7, 2064 doi: 10.1021/acsphotonics.2c01541
[80]
Liu X Z, Galfsky T, Sun Z, et al. Strong light−matter coupling in two-dimensional atomic crystals. Nat Photonics, 2015, 9(1), 30 doi: 10.1038/nphoton.2014.304
[81]
Li Q Y, Alfrey A, Hu J Q, et al. Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat Commun, 2023, 14(1), 1837 doi: 10.1038/s41467-023-37500-1
[82]
Dufferwiel S, Lyons T P, Solnyshkov D D, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics, 2017, 11(8), 497 doi: 10.1038/nphoton.2017.125
[83]
Ajayi O A, Ardelean J V, Shepard G D, et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater, 2017, 4(3), 031011 doi: 10.1088/2053-1583/aa6aa1
[84]
Del Pozo-Zamudio O, Genco A, Schwarz S, et al. Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities. 2D Mater, 2020, 7(3), 031006 doi: 10.1088/2053-1583/ab8542
[85]
Slootsky M, Liu X Z, Menon V M, et al. Room temperature frenkel-wannier-mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys Rev Lett, 2014, 112(7), 076401 doi: 10.1103/PhysRevLett.112.076401
[86]
Zheng D, Zhang S P, Deng Q, et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett, 2017, 17(6), 3809 doi: 10.1021/acs.nanolett.7b01176
[87]
Sun J W, Li Y, Hu H T, et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13(8), 4408 doi: 10.1039/D0NR08592H
[88]
Wen J X, Wang H, Wang W L, et al. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett, 2017, 17(8), 4689 doi: 10.1021/acs.nanolett.7b01344
[89]
Liu W J, Lee B, Naylor C H, et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett, 2016, 16(2), 1262 doi: 10.1021/acs.nanolett.5b04588
[90]
Petrić M M, Kremser M, Barbone M, et al. Tuning the optical properties of a MoSe2 monolayer using nanoscale plasmonic antennas. Nano Lett, 2022, 22(2), 561 doi: 10.1021/acs.nanolett.1c02676
[91]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7(1), 13328 doi: 10.1038/ncomms13328
[92]
Hu F R, Fei Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv Opt Mater, 2020, 8(5), 1901003 doi: 10.1002/adom.201901003
[93]
Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B, 2007, 76(16), 165415 doi: 10.1103/PhysRevB.76.165415
[94]
Lundt N, Nagler P, Nalitov A, et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater, 2017, 4(2), 025096 doi: 10.1088/2053-1583/aa6ef2
[95]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16(2), 182 doi: 10.1038/nmat4792
[96]
Guo X D, Lyu W, Chen T H, et al. Polaritons in van der waals heterostructures. Adv Mater, 2023, 35, 2201856 doi: 10.1002/adma.202201856
[97]
Liu D S, Wu J A, Xu H X, et al. Emerging light-emitting materials for photonic integration. Adv Mater, 2021, 33(4), 2003733 doi: 10.1002/adma.202003733
[98]
Wu J H, Ma H, Yin P, et al. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci, 2021, 1(4), 2000053 doi: 10.1002/smsc.202000053
[99]
Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108(19), 196802 doi: 10.1103/PhysRevLett.108.196802
[100]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[101]
Gu J, Chakraborty B, Khatoniar M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat Nanotechnol, 2019, 14(11), 1024 doi: 10.1038/s41565-019-0543-6
[102]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 2014, 9(4), 268 doi: 10.1038/nnano.2014.26
[103]
Aftab S, Hegazy H H, Iqbal M Z, et al. Recent advances in dynamic homojunction PIN diodes based on 2D materials. Adv Mater Interfaces, 2023, 10(6), 2201937 doi: 10.1002/admi.202201937
[104]
Huang J K, Pu J A, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8(1), 923 doi: 10.1021/nn405719x
[105]
Chang Y H, Zhang W J, Zhu Y H, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8(8), 8582 doi: 10.1021/nn503287m
[106]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5(1), 10699 doi: 10.1038/srep10699
[107]
Sajid A, Ford M J, Reimers J R. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep Prog Phys, 2020, 83(4), 044501 doi: 10.1088/1361-6633/ab6310
[108]
Cai J M, Retzker A, Jelezko F, et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat Phys, 2013, 9(3), 168 doi: 10.1038/nphys2519
[109]
Lee J Y, Leong V, Kalashnikov D, et al. Integrated single photon emitters. AVS Quantum Sci, 2020, 2(3), 031701 doi: 10.1116/5.0011316
[110]
Arakawa Y, Holmes M J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 2020, 7(2), 021309 doi: 10.1063/5.0010193
[111]
Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3(5), 38 doi: 10.1038/s41578-018-0008-9
[112]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79
[113]
Peng L T, Chan H, Choo P, et al. Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips. Nano Lett, 2020, 20(8), 5866 doi: 10.1021/acs.nanolett.0c01789
[114]
Parto K, Azzam S I, Banerjee K, et al. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat Commun, 2021, 12(1), 3585 doi: 10.1038/s41467-021-23709-5
[115]
Dass C K, Khan M A, Clark G, et al. Ultra-long lifetimes of single quantum emitters in monolayer WSe2/hBN heterostructures. Adv Quantum Technol, 2019, 2(5-6), 1900022 doi: 10.1002/qute.201900022
[116]
Michaelis de Vasconcellos S, Wigger D, Wurstbauer U, et al. Single-photon emitters in layered van der waals materials. Phys Status Solidi B, 2022, 259(4), 2100566 doi: 10.1002/pssb.202100566
[117]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10(6), 503 doi: 10.1038/nnano.2015.67
[118]
Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10(6), 491 doi: 10.1038/nnano.2015.60
[119]
Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 2016, 3(2), 025038 doi: 10.1088/2053-1583/3/2/025038
[120]
Chakraborty C, Goodfellow K M, Nick Vamivakas A. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6(6), 2081 doi: 10.1364/OME.6.002081
[121]
Baek H, Brotons-Gisbert M, Koong Z X, et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci Adv, 2020, 6(37), eaba8526 doi: 10.1126/sciadv.aba8526
[122]
Kim S, Zhang B, Wang Z R, et al. Coherent polariton laser. Phys Rev X, 2016, 6(1), 011026 doi: 10.1103/PhysRevX.6.011026
[123]
Deng H, Weihs G, Snoke D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci, 2003, 100(26), 15318 doi: 10.1073/pnas.2634328100
[124]
Wang C Y, Kang Z, Zheng Z, et al. Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes. J Mater Chem C, 2019, 7(43), 13613 doi: 10.1039/C9TC04481G
[125]
Chen Z X, Liu H Q, Chen X C, et al. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl Mater Interfaces, 2016, 8(31), 20267 doi: 10.1021/acsami.6b04768
Fig. 1.  (Color online) Intriguing applications based on atomically thin MoSe2, including light-emitting diodes, single-photon emitters, and coherent light sources.

Fig. 2.  (Color online) (a−d) ARPES spectra of MoSe2 thin layers with different thicknesses[37]. (e) Schematic of band structures of MoX2 and WX2 monolayers[40]. (f) Classification of excitonic quasiparticles, including neutral excitons (X0), charged excitons (X*), biexcitons (XX), and interlayer excitons (XI).

Fig. 3.  (Color online) (a) Schematic, optical image, and PL mapping of the freestanding bilayer MoSe2[47]. (b) The PL spectra both of the freestanding bilayer MoSe2 and the one on SiO2 substrate, where the "X", "T", and "A" refer to the emission peak of biexcitons, trions, and excitons, respectively[47]. (c) The relationship between PL intensities of A and X[47]. (d) Illustration of different kinds of excitons in real space[15]. (e) Measured and simulated reflection contrast spectra (Rsam/Rsub) of h-BN-encapsulated monolayer MoSe2[15]. (f) Measured and simulated reflection contrast spectra of h-BN-encapsulated bilayer MoSe2[15].

Fig. 4.  (Color online) (a) PL spectra of monolayer MoSe2 at different temperatures[48]. (b) Two pronounced PL peaks of monolayer MoSe2 at 20 K: the higher-energy X0 and the lower-energy X* at 1.659 and 1.63 eV, respectively. The inset indicates the X* binding energy of approximately 30 meV[57]. (c) Temperature-dependent PL spectra of monolayer MoSe2[57]. (d) PL spectra of monolayer MoSe2 measured in the temperature range from 0 to 300 K[59]. (e) A and B excitonic energies at different temperatures, which were fitted by the Varshni relationships[59].

Fig. 5.  (Color online) (a) PL and reflectance contrast (RC) spectra of h-BN encapsulated monolayer MoSe2 at 10 K, where the Xb and XT represent the bright neutral excitons and the trions bands, respectively[55]. (b) PL intensity map of encapsulated monolayer MoSe2 at different in-plane magnetic fields[55]. (c) PL spectra of samples measured at 0 and 31 T[55]. (d) Magnetic field dependence of PL intensity map of monolayer MoSe2[56]. (e) Gate voltage dependencies of PL intensities for X* and X0, respectively[57]. (f) Calculation results of the exciton band structures of bright KK and dark KΛ in the MoSe2 bilayer[54].

Fig. 6.  (Color online) (a) Schematic of a monolayer-MoSe2 coupled plasmonic microcavity[26]. (b) Simulated scattering spectra of MoSe2 coupled microcavities, where the blue dashed and the red solid lines correspond to the MoSe2 monolayers without/with the Al2O3 coating, respectively. The yellow PL spectrum is from the MoSe2 monolayer on a quartz substrate[26]. (c) The distributions of surface charge and electric field[26]. (d) Illustration of a MoSe2 monolayer encapsulated by h-BN on SiO2/Si[7]. (e) The PL spectrum of MoSe2 encapsulated by h-BN layers exhibits the neutral (X) and the charged (T) exciton bands at 7 K[7]. (f) The bottom h-BN thickness dependence of X radiative lifetime of monolayer MoSe2. The red dotted line shows the intensities of the electromagnetic field. The inset presents the normalized time-resolved photoluminescence (TRPL) intensities with different bottom h-BN layers[7]. (g) Diagram of the WSe2/MoSe2 heterostructure coupled with Au nanodisks on the PPhC[30]. (h) The energy dependences of the averaged Purcell factors of γmean and the coefficients of σ(γ)/γmean, respectively[30]. (i) The left panel is the typical interlayer excitons in a heterostructure and the right panel represents long-lived interlayer excitons in a heterostructure coupled with the nano-photonic microcavity[30].

Fig. 7.  (Color online) (a) Illustration of exciton−photon interaction in the case of an F−P microcavity system. (b) Schematic of angle-resolved optical response in the exciton−photon strong coupling regime, exhibiting the anti-crossing characteristics[77]. (c) Structures of monolayer MoSe2 integrating into an open cavity (left) and a monolithic cavity (right), respectively[33]. (d) Schematic of the self-hybridized F−P cavity in bulk TMDs[78].

Fig. 8.  (Color online) Various polaritons are formed in TMDs-coupled cavities, including EPs, PEPs, and phonon-polaritons.

Fig. 9.  (Color online) (a, b) A tunable hemispherical cavity coupled with the MoSe2/hBN heterostructures formed by a planar and a concave DBR and the corresponding strong coupling behavior with a Rabi splitting of 29 meV, respectively[27]. (c) Schematic of a MoSe2/h-BN heterostructure embedded in the F−P microcavity[34]. (d) Angle-resolved photoluminescence (ARPL) image of a MoSe2/h-BN heterostructure in a monolithic cavity[34]. (e) Schematic of a high-quality F−P microcavity device embedded with a h-BN encapsulated monolayer MoSe2[29]. (f) Measured and fitted reflection contrast spectra of the bare cavity mode and the one with hBN layers[29]. (g) ARR map of a MoSe2/WS2 heterostructure measured at 5 K[8].

Fig. 10.  (Color online) (a) Schematic of the microcavity device embedded with a MoSe2 monolayer and four GaAs quantum wells[35]. (b) The calculated reflectivity spectrum of the Tamm-plasmon microcavity[35]. (c) ARPL of the Tamm microcavity of a MoSe2 monolayer at 4 K[35]. (d) Illustration of a MoSe2 monolayer encapsulated by h-BN is inserted into an F−P microcavity structure and the optical microscope image of the full device[23]. (e) The pump-power dependent polariton dispersions for a MoSe2 microcavity[23].

Fig. 11.  (Color online) (a) Illustration of the structure of a Tamm microcavity[33]. (b) A Tamm-plasmon microcavity employs a monolayer MoSe2 and four embedded GaAs quantum wells as active layers[36]. (c) Power dependences of PL intensity and linewidth for MoSe2 monolayer, respectively[36]. (d) Blueshift of the polariton mode as a function of excitation power[36]. (e) Schematic of a MoSe2-integrated Tamm microcavity[94]. (f) ARPL map of a Tamm microcavity, in which the UPB and LPB are indicated by black dotted lines[94].

Fig. 12.  (Color online) (a) The structure of MoSe2/WSe2 heterostructure device[18]. (b) Illustration of Nb-doping mechanism[19]. (c) The rectifying behavior of p−n diode based on MoSe2[19]. (d) The formation process of a p−i−n junction[3]. (e) Light-emitting zones of WSe2, MoSe2 and WS2 devices, respectively[3]. (f) Illustration of a two-terminal LED[3].

Fig. 13.  (Color online) (a) PL intensity map of MoSe2 monolayer in the range of 683−855 nm[21]. (b) PL spectra of two samples on gold substrates[21]. (c) PL spectra for discrete QDA, QDB, and QDC measured at varied magnetic fields[21]. (d) Illustration of MoSe2 monolayer covering the holes with different sizes to create exciton traps[20]. (e) PL spectra collected at a quantum emitter and a flat region[20]. (f) PL spectra of Moiré-confined interlayer excitons[121].

Fig. 14.  (Color online) (a) Schematic of a WSe2/MoSe2 heterostructure on the silicon−nitride grating cavity system[22]. (b) Band alignment of a WSe2/MoSe2 heterostructure[22]. (c) The pump power dependences of photon occupancy (Ip) and linewidth[22]. (d) Optical image of the MoSe2/h-BN quantum wells[27]. (e) Illustration of a monolayer MoSe2 integrated with the photonic crystal microcavity[81]. (f) ARR of Dodecanol/MoSe2/Dodecanol-PC on the device with the detuning value of 0.1 ± 0.2 meV approximately[81].

Table 1.   Strong coupling regime in atomically thin MoSe2.

MaterialsPreparation technique of MoSe2Microcavity typeT (K)Rabi splitting (2hΩ)/
coupling strength (g)
Ref.
1L MoSe2Mechanical exfoliationOpen cavity417.5 meV[33]
F−P cavity429.3 meV
1-dodecanol/1L MoSe2/1-dodecanolMechanical exfoliationPhotonic crystal cavity543 ± 3 meV[81]
1L MoSe2/h-BNMechanical exfoliationF−P cavity4.220 meV[27]
MoSe2/h-BN/MoSe2/h-BN29 meV
1L MoSe2/h-BNCVD growthOpen cavity417 meV[34]
F−P cavity534 ± 4 meV
F−P cavity15031 ± 4 meV
MoSe2/WS2Mechanical exfoliationF−P cavity4g is 17.1 ± 0.1[8]
h-BN/1L MoSe2/h-BNMechanical exfoliationF−P cavity4.215.2 ± 0.1 meV[82]
h-BN/1L MoSe2/h-BNMechanical exfoliationF−P cavity528 meV[29]
1L MoSe2-GaAs quantum wellsMechanical exfoliationTamm cavity4g is 20[35]
1L MoSe2-GaAs quantum wellsMechanical exfoliationTamm cavity4.2g is 20[36]
h-BN/1L MoSe2-GaAs quantum wellCVD growthF−P cavity425 ± 2 meV[23]
1L MoSe2Mechanical exfoliationTamm cavity433.5 meV[33]
DownLoad: CSV
[1]
Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33
[2]
Wu X, Chen X Y, Yang R X, et al. Recent advances on tuning the interlayer coupling and properties in van der waals heterostructures. Small, 2022, 18(15), 2105877 doi: 10.1002/smll.202105877
[3]
Ou H, Matsuoka H, Tempia J, et al. Spatial control of dynamic p-i-n junctions in transition metal dichalcogenide light-emitting devices. ACS Nano, 2021, 15(8), 12911 doi: 10.1021/acsnano.1c01242
[4]
Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r
[5]
Du W, Yu P, Zhu J T, et al. An ultrathin MoSe2 photodetector with near-perfect absorption. Nanotechnology, 2020, 31(22), 225201 doi: 10.1088/1361-6528/ab746f
[6]
Wen W, Wu L S, Yu T. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater Lett, 2020, 2(10), 1328 doi: 10.1021/acsmaterialslett.0c00277
[7]
Fang H H, Han B, Robert C, et al. Control of the exciton radiative lifetime in van der waals heterostructures. Phys Rev Lett, 2019, 123(6), 067401 doi: 10.1103/PhysRevLett.123.067401
[8]
Zhang L, Wu F C, Hou S C, et al. Van der waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 2021, 591(7848), 61 doi: 10.1038/s41586-021-03228-5
[9]
Jia S A, Jin Z H, Zhang J, et al. Lateral monolayer MoSe2-WSe2 p-n heterojunctions with giant built-in potentials. Small, 2020, 16(34), 2002263 doi: 10.1002/smll.202002263
[10]
Sun J W, Hu H T, Pan D, et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity. Nano Lett, 2020, 20(7), 4953 doi: 10.1021/acs.nanolett.0c01019
[11]
Henck H, Mauro D, Domaretskiy D, et al. Light sources with bias tunable spectrum based on van der waals interface transistors. Nat Commun, 2022, 13(1), 3917 doi: 10.1038/s41467-022-31605-9
[12]
Chen Y Y, Liu Z Y, Li J Z, et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8), 10258 doi: 10.1021/acsnano.0c03624
[13]
Chen Y Y, Liu Z Y, Li J Z, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343
[14]
Yao W D, Yang D, Chen Y Y, et al. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett, 2022, 22(17), 7230 doi: 10.1021/acs.nanolett.2c02742
[15]
Horng J, Stroucken T, Zhang L, et al. Observation of interlayer excitons in MoSe2 single crystals. Phys Rev B, 2018, 97(24), 241404 doi: 10.1103/PhysRevB.97.241404
[16]
Joe A Y, Jauregui L A, Pistunova K, et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys Rev B, 2021, 103(16), L161411 doi: 10.1103/PhysRevB.103.L161411
[17]
Huang C M, Wu S F, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 2014, 13(12), 1096 doi: 10.1038/nmat4064
[18]
Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 2015, 6(1), 6242 doi: 10.1038/ncomms7242
[19]
Jin Y, Keum D H, An S J, et al. A van der waals homojunction: Ideal p-n diode behavior in MoSe2. Adv Mater, 2015, 27(37), 5534 doi: 10.1002/adma.201502278
[20]
Yu L, Deng M D, Zhang J L, et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett, 2021, 21(6), 2376 doi: 10.1021/acs.nanolett.0c04282
[21]
Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 2016, 108(14), 142101 doi: 10.1063/1.4945268
[22]
Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785), 80 doi: 10.1038/s41586-019-1779-x
[23]
Anton-Solanas C, Waldherr M, Klaas M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat Mater, 2021, 20(9), 1233 doi: 10.1038/s41563-021-01000-8
[24]
Li C Y, Wang Q F, Diao H, et al. Enhanced photoluminescence of monolayer MoSe2 in a double resonant plasmonic nanocavity with fano resonance and mode matching. Laser Photonics Rev, 2022, 16(2), 2100199 doi: 10.1002/lpor.202100199
[25]
Péchou R, Jia S A, Rigor J, et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics, 2020, 7(11), 3061 doi: 10.1021/acsphotonics.0c01101
[26]
Zhang Y X, Chen W, Fu T, et al. Simultaneous surface-enhanced resonant raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension. Nano Lett, 2019, 19(9), 6284 doi: 10.1021/acs.nanolett.9b02425
[27]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6(1), 8579 doi: 10.1038/ncomms9579
[28]
Kumar P, Lynch J, Song B K, et al. light−matter coupling in large-area van der waals superlattices. Nat Nanotechnol, 2022, 17(2), 182 doi: 10.1038/s41565-021-01023-x
[29]
Paik E Y, Zhang L, Hou S C, et al. High quality factor microcavity for van der waals semiconductor polaritons using a transferrable mirror. Adv Opt Mater, 2023, 11(1), 2201440 doi: 10.1002/adom.202201440
[30]
Park S, Kim D, Seo M K. Plasmonic photonic crystal mirror for long-lived interlayer exciton generation. ACS Photonics, 2021, 8(12), 3619 doi: 10.1021/acsphotonics.1c01243
[31]
Tanoh A O A, Alexander-Webber J, Fan Y, et al. Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands. Nanoscale Adv, 2021, 3(14), 4216 doi: 10.1039/D0NA01014F
[32]
Han H V, Lu A Y, Lu L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1), 1454 doi: 10.1021/acsnano.5b06960
[33]
Lundt N, Maryński A, Cherotchenko E, et al. Monolayered MoSe2: A candidate for room temperature polaritonics. 2D Mater, 2017, 4(1), 015006 doi: 10.1088/2053-1583/4/1/015006
[34]
Gillard D J, Genco A, Ahn S, et al. Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Mater, 2021, 8(1), 011002 doi: 10.1088/2053-1583/abc5a1
[35]
Wurdack M, Lundt N, Klaas M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun, 2017, 8(1), 259 doi: 10.1038/s41467-017-00155-w
[36]
Waldherr M, Lundt N, Klaas M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat Commun, 2018, 9(1), 3286 doi: 10.1038/s41467-018-05532-7
[37]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277
[38]
Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 2012, 12(11), 5576 doi: 10.1021/nl302584w
[39]
Shi Y F, Hua C X, Li B, et al. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Funct Mater, 2013, 23(14), 1832 doi: 10.1002/adfm.201202144
[40]
Schneider C, Glazov M M, Korn T, et al. Two-dimensional semiconductors in the regime of strong light−matter coupling. Nat Commun, 2018, 9(1), 2695 doi: 10.1038/s41467-018-04866-6
[41]
Ye Z L, Cao T, O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517), 214 doi: 10.1038/nature13734
[42]
Echeverry J P, Urbaszek B, Amand T, et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 2016, 93(12), 121107 doi: 10.1103/PhysRevB.93.121107
[43]
Hao K, Specht J F, Nagler P, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat Commun, 2017, 8(1), 15552 doi: 10.1038/ncomms15552
[44]
Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12(3), 207 doi: 10.1038/nmat3505
[45]
Rivera P, Yu H Y, Seyler K L, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotechnol, 2018, 13(11), 1004 doi: 10.1038/s41565-018-0193-0
[46]
Datta B, Khatoniar M, Deshmukh P, et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nat Commun, 2022, 13(1), 6341 doi: 10.1038/s41467-022-33940-3
[47]
Pei J J, Yang J, Wang X B, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017, 11(7), 7468 doi: 10.1021/acsnano.7b03909
[48]
Godde T, Schmidt D, Schmutzler J, et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 2016, 94(16), 165301 doi: 10.1103/PhysRevB.94.165301
[49]
Wang J A, Huang J H, Li Y H, et al. Radiative and non-radiative exciton recombination processes in a chemical vapor deposition-grown MoSe2 film. J Phys Chem C, 2022, 126(36), 15319 doi: 10.1021/acs.jpcc.2c04550
[50]
Yu Y F, Yu Y L, Xu C, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 2016, 26(26), 4733 doi: 10.1002/adfm.201600418
[51]
Wierzbowski J, Klein J, Sigger F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci Rep, 2017, 7(1), 12383 doi: 10.1038/s41598-017-09739-4
[52]
Grzeszczyk M, Molas M R, Nogajewski K, et al. The effect of metallic substrates on the optical properties of monolayer MoSe2. Sci Rep, 2020, 10(1), 4981 doi: 10.1038/s41598-020-61673-0
[53]
Ciarrocchi A, Unuchek D, Avsar A, et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der waals heterostructures. Nat Photonics, 2019, 13(2), 131 doi: 10.1038/s41566-018-0325-y
[54]
Hagel J, Brem S, Malic E. Electrical tuning of moiré excitons in MoSe2 bilayers. 2D Mater, 2023, 10(1), 014013 doi: 10.1088/2053-1583/aca916
[55]
Lu Z G, Rhodes D, Li Z P, et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2. 2D Mater, 2020, 7(1), 015017 doi: 10.1088/2053-1583/ab5614
[56]
Robert C, Han B, Kapuscinski P, et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat Commun, 2020, 11(1), 4037 doi: 10.1038/s41467-020-17608-4
[57]
Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 2013, 4(1), 1474 doi: 10.1038/ncomms2498
[58]
Tang Y H, Gu J, Liu S, et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat Nanotechnol, 2021, 16(1), 52 doi: 10.1038/s41565-020-00783-2
[59]
Shim G W, Yoo K, Seo S B, et al. Large-area single-layer MoSe2 and its van der waals heterostructures. ACS Nano, 2014, 8(7), 6655 doi: 10.1021/nn405685j
[60]
Du W N, Zhang S A, Zhang Q, et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 2019, 31(45), 1804894 doi: 10.1002/adma.201804894
[61]
Zhao L Y, Shang Q Y, Li M L, et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res, 2021, 14(6), 1937 doi: 10.1007/s12274-020-3073-5
[62]
Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 1946, 69, 37 doi: 10.1103/PhysRev.69.37
[63]
Shang J Z, Cong C X, Wang Z L, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun, 2017, 8(1), 543 doi: 10.1038/s41467-017-00743-w
[64]
Lozano G, Rodriguez S R, Verschuuren M A, et al. Metallic nanostructures for efficient LED lighting. Light Sci Appl, 2016, 5(6), e16080 doi: 10.1038/lsa.2016.80
[65]
Schuler B, Cochrane K A, Kastl C, et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci Adv, 2020, 6(38), eabb5988 doi: 10.1126/sciadv.abb5988
[66]
Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 2005, 95(1), 013904 doi: 10.1103/PhysRevLett.95.013904
[67]
Wang Z, Dong Z G, Gu Y H, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 2016, 7(1), 11283 doi: 10.1038/ncomms11283
[68]
Pelton M. Modified spontaneous emission in nanophotonic structures. Nat Photonics, 2015, 9(7), 427 doi: 10.1038/nphoton.2015.103
[69]
Kim J H, Lee H S, An G H, et al. Dielectric nanowire hybrids for plasmon-enhanced light−matter interaction in 2D semiconductors. ACS Nano, 2020, 14(9), 11985 doi: 10.1021/acsnano.0c05158
[70]
Husko C, Kang J, Moille G, et al. Silicon-phosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett, 2018, 18(10), 6515 doi: 10.1021/acs.nanolett.8b03037
[71]
Gerard J M, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J Light Technol, 1999, 17(11), 2089 doi: 10.1109/50.802999
[72]
Lepeshov S, Krasnok A, Alù A. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. Nanotechnology, 2019, 30(25), 254004 doi: 10.1088/1361-6528/ab0daf
[73]
Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett, 1992, 69(23), 3314 doi: 10.1103/PhysRevLett.69.3314
[74]
Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation. Rev Mod Phys, 2010, 82(2), 1489 doi: 10.1103/RevModPhys.82.1489
[75]
Lackner L, Dusel M, Egorov O A, et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat Commun, 2021, 12(1), 4933 doi: 10.1038/s41467-021-24925-9
[76]
Wurdack M, Estrecho E, Todd S, et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat Commun, 2021, 12(1), 5366 doi: 10.1038/s41467-021-25656-7
[77]
Jiang Z J, Ren A, Yan Y L, et al. Exciton-polaritons and their bose-einstein condensates in organic semiconductor microcavities. Adv Mater, 2022, 34(4), 2106095 doi: 10.1002/adma.202106095
[78]
Munkhbat B, Baranov D G, Stührenberg M, et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics, 2019, 6(1), 139 doi: 10.1021/acsphotonics.8b01194
[79]
Shang J Z, Zhang X Y, Zhang V L, et al. Exciton-photon interactions in two-dimensional semiconductor microcavities. ACS Photonics, 2023, 10, 7, 2064 doi: 10.1021/acsphotonics.2c01541
[80]
Liu X Z, Galfsky T, Sun Z, et al. Strong light−matter coupling in two-dimensional atomic crystals. Nat Photonics, 2015, 9(1), 30 doi: 10.1038/nphoton.2014.304
[81]
Li Q Y, Alfrey A, Hu J Q, et al. Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat Commun, 2023, 14(1), 1837 doi: 10.1038/s41467-023-37500-1
[82]
Dufferwiel S, Lyons T P, Solnyshkov D D, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics, 2017, 11(8), 497 doi: 10.1038/nphoton.2017.125
[83]
Ajayi O A, Ardelean J V, Shepard G D, et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater, 2017, 4(3), 031011 doi: 10.1088/2053-1583/aa6aa1
[84]
Del Pozo-Zamudio O, Genco A, Schwarz S, et al. Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities. 2D Mater, 2020, 7(3), 031006 doi: 10.1088/2053-1583/ab8542
[85]
Slootsky M, Liu X Z, Menon V M, et al. Room temperature frenkel-wannier-mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys Rev Lett, 2014, 112(7), 076401 doi: 10.1103/PhysRevLett.112.076401
[86]
Zheng D, Zhang S P, Deng Q, et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett, 2017, 17(6), 3809 doi: 10.1021/acs.nanolett.7b01176
[87]
Sun J W, Li Y, Hu H T, et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13(8), 4408 doi: 10.1039/D0NR08592H
[88]
Wen J X, Wang H, Wang W L, et al. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett, 2017, 17(8), 4689 doi: 10.1021/acs.nanolett.7b01344
[89]
Liu W J, Lee B, Naylor C H, et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett, 2016, 16(2), 1262 doi: 10.1021/acs.nanolett.5b04588
[90]
Petrić M M, Kremser M, Barbone M, et al. Tuning the optical properties of a MoSe2 monolayer using nanoscale plasmonic antennas. Nano Lett, 2022, 22(2), 561 doi: 10.1021/acs.nanolett.1c02676
[91]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7(1), 13328 doi: 10.1038/ncomms13328
[92]
Hu F R, Fei Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv Opt Mater, 2020, 8(5), 1901003 doi: 10.1002/adom.201901003
[93]
Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B, 2007, 76(16), 165415 doi: 10.1103/PhysRevB.76.165415
[94]
Lundt N, Nagler P, Nalitov A, et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater, 2017, 4(2), 025096 doi: 10.1088/2053-1583/aa6ef2
[95]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16(2), 182 doi: 10.1038/nmat4792
[96]
Guo X D, Lyu W, Chen T H, et al. Polaritons in van der waals heterostructures. Adv Mater, 2023, 35, 2201856 doi: 10.1002/adma.202201856
[97]
Liu D S, Wu J A, Xu H X, et al. Emerging light-emitting materials for photonic integration. Adv Mater, 2021, 33(4), 2003733 doi: 10.1002/adma.202003733
[98]
Wu J H, Ma H, Yin P, et al. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci, 2021, 1(4), 2000053 doi: 10.1002/smsc.202000053
[99]
Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108(19), 196802 doi: 10.1103/PhysRevLett.108.196802
[100]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[101]
Gu J, Chakraborty B, Khatoniar M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat Nanotechnol, 2019, 14(11), 1024 doi: 10.1038/s41565-019-0543-6
[102]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 2014, 9(4), 268 doi: 10.1038/nnano.2014.26
[103]
Aftab S, Hegazy H H, Iqbal M Z, et al. Recent advances in dynamic homojunction PIN diodes based on 2D materials. Adv Mater Interfaces, 2023, 10(6), 2201937 doi: 10.1002/admi.202201937
[104]
Huang J K, Pu J A, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8(1), 923 doi: 10.1021/nn405719x
[105]
Chang Y H, Zhang W J, Zhu Y H, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8(8), 8582 doi: 10.1021/nn503287m
[106]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5(1), 10699 doi: 10.1038/srep10699
[107]
Sajid A, Ford M J, Reimers J R. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep Prog Phys, 2020, 83(4), 044501 doi: 10.1088/1361-6633/ab6310
[108]
Cai J M, Retzker A, Jelezko F, et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat Phys, 2013, 9(3), 168 doi: 10.1038/nphys2519
[109]
Lee J Y, Leong V, Kalashnikov D, et al. Integrated single photon emitters. AVS Quantum Sci, 2020, 2(3), 031701 doi: 10.1116/5.0011316
[110]
Arakawa Y, Holmes M J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 2020, 7(2), 021309 doi: 10.1063/5.0010193
[111]
Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3(5), 38 doi: 10.1038/s41578-018-0008-9
[112]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79
[113]
Peng L T, Chan H, Choo P, et al. Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips. Nano Lett, 2020, 20(8), 5866 doi: 10.1021/acs.nanolett.0c01789
[114]
Parto K, Azzam S I, Banerjee K, et al. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat Commun, 2021, 12(1), 3585 doi: 10.1038/s41467-021-23709-5
[115]
Dass C K, Khan M A, Clark G, et al. Ultra-long lifetimes of single quantum emitters in monolayer WSe2/hBN heterostructures. Adv Quantum Technol, 2019, 2(5-6), 1900022 doi: 10.1002/qute.201900022
[116]
Michaelis de Vasconcellos S, Wigger D, Wurstbauer U, et al. Single-photon emitters in layered van der waals materials. Phys Status Solidi B, 2022, 259(4), 2100566 doi: 10.1002/pssb.202100566
[117]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10(6), 503 doi: 10.1038/nnano.2015.67
[118]
Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10(6), 491 doi: 10.1038/nnano.2015.60
[119]
Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 2016, 3(2), 025038 doi: 10.1088/2053-1583/3/2/025038
[120]
Chakraborty C, Goodfellow K M, Nick Vamivakas A. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6(6), 2081 doi: 10.1364/OME.6.002081
[121]
Baek H, Brotons-Gisbert M, Koong Z X, et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci Adv, 2020, 6(37), eaba8526 doi: 10.1126/sciadv.aba8526
[122]
Kim S, Zhang B, Wang Z R, et al. Coherent polariton laser. Phys Rev X, 2016, 6(1), 011026 doi: 10.1103/PhysRevX.6.011026
[123]
Deng H, Weihs G, Snoke D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci, 2003, 100(26), 15318 doi: 10.1073/pnas.2634328100
[124]
Wang C Y, Kang Z, Zheng Z, et al. Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes. J Mater Chem C, 2019, 7(43), 13613 doi: 10.1039/C9TC04481G
[125]
Chen Z X, Liu H Q, Chen X C, et al. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl Mater Interfaces, 2016, 8(31), 20267 doi: 10.1021/acsami.6b04768
1. Zhong, Z., Wang, Y., Jin, X. et al. Analysis of current aggregation in gate-control dual direction silicon controlled rectifier. IEICE Electronics Express, 2021, 18(13) doi:10.1587/ELEX.18.20210214
2. Zhong, Z., Zhou, X., Jin, X. Analysis and Simulation of A Gate-Controlled DDSCR Embedded with MOS-Path for Adjustable Holding Voltage in HV ESD Protection. 2021. doi:10.1109/ISNE48910.2021.9493647
3. Wu, J., Yu, Z., Hong, G. et al. Design of GGNMOS ESD protection device for radiation-hardened 0.18 μm CMOS process. Journal of Semiconductors, 2020, 41(12): 122403. doi:10.1088/1674-4926/41/12/122403
4. Ye, R., Liu, S., Tian, Y. et al. Influence of latch-up immunity structure on ESD robustness of SOI-LIGBT used as output device. IEEE Transactions on Device and Materials Reliability, 2018, 18(2): 284-290. doi:10.1109/TDMR.2018.2829550
5. Zhang, L., Wang, Y., Wang, Y. et al. Insight into multiple-triggering effect in DTSCRs for ESD protection. Journal of Semiconductors, 2017, 38(7): 075001. doi:10.1088/1674-4926/38/7/075001
6. Jizhi, L., Lingli, Q., Rui, T. et al. Self-triggered stacked silicon-controlled rectifier structure (STSSCR) for on-chip electrostatic discharge (ESD) protection. Microelectronics Reliability, 2017. doi:10.1016/j.microrel.2016.11.014
7. Tu, Y., Qian, L., Xia, Y. CNFET-based voltage rectifier circuit for biomedical implantable applications. Journal of Semiconductors, 2017, 38(2): 025003. doi:10.1088/1674-4926/38/2/025003
8. Ya Olikh, O., Voitenko, K.V., Burbelo, R.M. et al. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure. Journal of Semiconductors, 2016, 37(12): 122002. doi:10.1088/1674-4926/37/12/122002
9. Liao, C., Liu, J., Liu, Z. A novel HBT trigger SCR in 0.35 μm SiGe BiCMOS technology. Journal of Semiconductors, 2016, 37(9): 094004. doi:10.1088/1674-4926/37/9/094004
  • Search

    Advanced Search >>

    GET CITATION

    Xiuwen Bi, Hailian Liang, Xiaofeng Gu, Long Huang. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. Journal of Semiconductors, 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007
    X W Bi, H L Liang, X F Gu, L Huang. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. J. Semicond., 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1474 Times PDF downloads: 152 Times Cited by: 9 Times

    History

    Received: 12 August 2023 Revised: 23 October 2023 Online: Accepted Manuscript: 02 January 2024Uncorrected proof: 04 January 2024Published: 10 April 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiuwen Bi, Hailian Liang, Xiaofeng Gu, Long Huang. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. Journal of Semiconductors, 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007 ****X W Bi, H L Liang, X F Gu, L Huang. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. J. Semicond., 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007.
      Citation:
      Xinyu Zhang, Xuewen Zhang, Hanwei Hu, Vanessa Li Zhang, Weidong Xiao, Guangchao Shi, Jingyuan Qiao, Nan Huang, Ting Yu, Jingzhi Shang. Light-emitting devices based on atomically thin MoSe2[J]. Journal of Semiconductors, 2024, 45(4): 041701. doi: 10.1088/1674-4926/45/4/041701 ****
      X Y Zhang, X W Zhang, H W Hu, V L Zhang, W D Xiao, G C Shi, J Y Qiao, N Huang, T Yu, J Z Shang. Light-emitting devices based on atomically thin MoSe2[J]. J. Semicond, 2024, 45(4): 041701. doi: 10.1088/1674-4926/45/4/041701

      Light-emitting devices based on atomically thin MoSe2

      DOI: 10.1088/1674-4926/45/4/041701
      More Information
      • Xinyu Zhang received her B.S. degree from Shaanxi University of Science and Technology and her master’s degree from Northeastern University. At present, she is a doctoral student at Northwestern Polytechnical University under the supervision of Prof. Jingzhi Shang. Her research focuses on the light−matter coupling regimes of TMDs materials based on the on-chip optical microcavities
      • Ting Yu professor at the School of Physics and Technology of Wuhan University. He received a doctorate degree from the National University of Singapore in 2003, joined Nanyang Technological University in 2005, and was hired as a full professor (tenured position) of NTU, Singapore in 2017. Dr. Yu has received many prestigious awards including Nanyang Excellence Award for Research and Innovation (2008), National Young Scientist Award, National Research Foundation Fellowship Award (2009). His research interests cover the fabrication of 2D materials and the investigation of their optical, optoelectrical, and magnetic properties for developing novel electronics, optoelectronics, and data storage
      • Jingzhi Shang is a professor at the Institute of Flexible Electronics of Northwestern Polytechnical University in China. He obtained a bachelor’s degree in physics and a master’s degree in condensed matter physics from Xiamen University in 2006 and 2009, respectively. In 2014, he finished the PHD study at the School of Mathematics and Physics of Nanyang Technological University in Singapore. Then he worked as a research fellow in the same school till 2018. At present, he is interested in optical investigation of two-dimensional semiconductors and their light-emitting devices
      • Corresponding author: yu.ting@whu.edu.cniamjzshang@nwpu.edu.cn
      • Received Date: 2023-08-12
      • Revised Date: 2023-10-23
      • Available Online: 2024-01-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return