[1] |
Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33
|
[2] |
Wu X, Chen X Y, Yang R X, et al. Recent advances on tuning the interlayer coupling and properties in van der waals heterostructures. Small, 2022, 18(15), 2105877 doi: 10.1002/smll.202105877
|
[3] |
Ou H, Matsuoka H, Tempia J, et al. Spatial control of dynamic p-i-n junctions in transition metal dichalcogenide light-emitting devices. ACS Nano, 2021, 15(8), 12911 doi: 10.1021/acsnano.1c01242
|
[4] |
Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe 2 field-effect transistors on parylene-C substrate. ACS Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r
|
[5] |
Du W, Yu P, Zhu J T, et al. An ultrathin MoSe 2 photodetector with near-perfect absorption. Nanotechnology, 2020, 31(22), 225201 doi: 10.1088/1361-6528/ab746f
|
[6] |
|
[7] |
Fang H H, Han B, Robert C, et al. Control of the exciton radiative lifetime in van der waals heterostructures. Phys Rev Lett, 2019, 123(6), 067401 doi: 10.1103/PhysRevLett.123.067401
|
[8] |
Zhang L, Wu F C, Hou S C, et al. Van der waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 2021, 591(7848), 61 doi: 10.1038/s41586-021-03228-5
|
[9] |
Jia S A, Jin Z H, Zhang J, et al. Lateral monolayer MoSe 2-WSe 2 p-n heterojunctions with giant built-in potentials. Small, 2020, 16(34), 2002263 doi: 10.1002/smll.202002263
|
[10] |
Sun J W, Hu H T, Pan D, et al. Selectively depopulating valley-polarized excitons in monolayer MoS 2 by local chirality in single plasmonic nanocavity. Nano Lett, 2020, 20(7), 4953 doi: 10.1021/acs.nanolett.0c01019
|
[11] |
Henck H, Mauro D, Domaretskiy D, et al. Light sources with bias tunable spectrum based on van der waals interface transistors. Nat Commun, 2022, 13(1), 3917 doi: 10.1038/s41467-022-31605-9
|
[12] |
Chen Y Y, Liu Z Y, Li J Z, et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8), 10258 doi: 10.1021/acsnano.0c03624
|
[13] |
Chen Y Y, Liu Z Y, Li J Z, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343
|
[14] |
Yao W D, Yang D, Chen Y Y, et al. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett, 2022, 22(17), 7230 doi: 10.1021/acs.nanolett.2c02742
|
[15] |
Horng J, Stroucken T, Zhang L, et al. Observation of interlayer excitons in MoSe 2 single crystals. Phys Rev B, 2018, 97(24), 241404 doi: 10.1103/PhysRevB.97.241404
|
[16] |
Joe A Y, Jauregui L A, Pistunova K, et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys Rev B, 2021, 103(16), L161411 doi: 10.1103/PhysRevB.103.L161411
|
[17] |
Huang C M, Wu S F, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe 2-WSe 2 semiconductors. Nat Mater, 2014, 13(12), 1096 doi: 10.1038/nmat4064
|
[18] |
Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe 2-WSe 2 heterostructures. Nat Commun, 2015, 6(1), 6242 doi: 10.1038/ncomms7242
|
[19] |
Jin Y, Keum D H, An S J, et al. A van der waals homojunction: Ideal p-n diode behavior in MoSe 2. Adv Mater, 2015, 27(37), 5534 doi: 10.1002/adma.201502278
|
[20] |
Yu L, Deng M D, Zhang J L, et al. Site-controlled quantum emitters in monolayer MoSe 2. Nano Lett, 2021, 21(6), 2376 doi: 10.1021/acs.nanolett.0c04282
|
[21] |
Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe 2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 2016, 108(14), 142101 doi: 10.1063/1.4945268
|
[22] |
Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785), 80 doi: 10.1038/s41586-019-1779-x
|
[23] |
Anton-Solanas C, Waldherr M, Klaas M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat Mater, 2021, 20(9), 1233 doi: 10.1038/s41563-021-01000-8
|
[24] |
Li C Y, Wang Q F, Diao H, et al. Enhanced photoluminescence of monolayer MoSe 2 in a double resonant plasmonic nanocavity with fano resonance and mode matching. Laser Photonics Rev, 2022, 16(2), 2100199 doi: 10.1002/lpor.202100199
|
[25] |
Péchou R, Jia S A, Rigor J, et al. Plasmonic-induced luminescence of MoSe 2 monolayers in a scanning tunneling microscope. ACS Photonics, 2020, 7(11), 3061 doi: 10.1021/acsphotonics.0c01101
|
[26] |
Zhang Y X, Chen W, Fu T, et al. Simultaneous surface-enhanced resonant raman and fluorescence spectroscopy of monolayer MoSe 2: Determination of ultrafast decay rates in nanometer dimension. Nano Lett, 2019, 19(9), 6284 doi: 10.1021/acs.nanolett.9b02425
|
[27] |
Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6(1), 8579 doi: 10.1038/ncomms9579
|
[28] |
Kumar P, Lynch J, Song B K, et al. light−matter coupling in large-area van der waals superlattices. Nat Nanotechnol, 2022, 17(2), 182 doi: 10.1038/s41565-021-01023-x
|
[29] |
Paik E Y, Zhang L, Hou S C, et al. High quality factor microcavity for van der waals semiconductor polaritons using a transferrable mirror. Adv Opt Mater, 2023, 11(1), 2201440 doi: 10.1002/adom.202201440
|
[30] |
Park S, Kim D, Seo M K. Plasmonic photonic crystal mirror for long-lived interlayer exciton generation. ACS Photonics, 2021, 8(12), 3619 doi: 10.1021/acsphotonics.1c01243
|
[31] |
Tanoh A O A, Alexander-Webber J, Fan Y, et al. Giant photoluminescence enhancement in MoSe 2 monolayers treated with oleic acid ligands. Nanoscale Adv, 2021, 3(14), 4216 doi: 10.1039/D0NA01014F
|
[32] |
Han H V, Lu A Y, Lu L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe 2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1), 1454 doi: 10.1021/acsnano.5b06960
|
[33] |
Lundt N, Maryński A, Cherotchenko E, et al. Monolayered MoSe 2: A candidate for room temperature polaritonics. 2D Mater, 2017, 4(1), 015006 doi: 10.1088/2053-1583/4/1/015006
|
[34] |
Gillard D J, Genco A, Ahn S, et al. Strong exciton-photon coupling in large area MoSe 2 and WSe 2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Mater, 2021, 8(1), 011002 doi: 10.1088/2053-1583/abc5a1
|
[35] |
Wurdack M, Lundt N, Klaas M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe 2 monolayer. Nat Commun, 2017, 8(1), 259 doi: 10.1038/s41467-017-00155-w
|
[36] |
Waldherr M, Lundt N, Klaas M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe 2-GaAs microcavity. Nat Commun, 2018, 9(1), 3286 doi: 10.1038/s41467-018-05532-7
|
[37] |
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277
|
[38] |
Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe 2 versus MoS 2. Nano Lett, 2012, 12(11), 5576 doi: 10.1021/nl302584w
|
[39] |
Shi Y F, Hua C X, Li B, et al. Highly ordered mesoporous crystalline MoSe 2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Funct Mater, 2013, 23(14), 1832 doi: 10.1002/adfm.201202144
|
[40] |
Schneider C, Glazov M M, Korn T, et al. Two-dimensional semiconductors in the regime of strong light−matter coupling. Nat Commun, 2018, 9(1), 2695 doi: 10.1038/s41467-018-04866-6
|
[41] |
Ye Z L, Cao T, O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517), 214 doi: 10.1038/nature13734
|
[42] |
Echeverry J P, Urbaszek B, Amand T, et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 2016, 93(12), 121107 doi: 10.1103/PhysRevB.93.121107
|
[43] |
Hao K, Specht J F, Nagler P, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe 2. Nat Commun, 2017, 8(1), 15552 doi: 10.1038/ncomms15552
|
[44] |
Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS 2. Nat Mater, 2013, 12(3), 207 doi: 10.1038/nmat3505
|
[45] |
Rivera P, Yu H Y, Seyler K L, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotechnol, 2018, 13(11), 1004 doi: 10.1038/s41565-018-0193-0
|
[46] |
Datta B, Khatoniar M, Deshmukh P, et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS 2. Nat Commun, 2022, 13(1), 6341 doi: 10.1038/s41467-022-33940-3
|
[47] |
Pei J J, Yang J, Wang X B, et al. Excited state biexcitons in atomically thin MoSe 2. ACS Nano, 2017, 11(7), 7468 doi: 10.1021/acsnano.7b03909
|
[48] |
Godde T, Schmidt D, Schmutzler J, et al. Exciton and trion dynamics in atomically thin MoSe 2 and WSe 2: Effect of localization. Phys Rev B, 2016, 94(16), 165301 doi: 10.1103/PhysRevB.94.165301
|
[49] |
Wang J A, Huang J H, Li Y H, et al. Radiative and non-radiative exciton recombination processes in a chemical vapor deposition-grown MoSe 2 film. J Phys Chem C, 2022, 126(36), 15319 doi: 10.1021/acs.jpcc.2c04550
|
[50] |
Yu Y F, Yu Y L, Xu C, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 2016, 26(26), 4733 doi: 10.1002/adfm.201600418
|
[51] |
Wierzbowski J, Klein J, Sigger F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci Rep, 2017, 7(1), 12383 doi: 10.1038/s41598-017-09739-4
|
[52] |
Grzeszczyk M, Molas M R, Nogajewski K, et al. The effect of metallic substrates on the optical properties of monolayer MoSe 2. Sci Rep, 2020, 10(1), 4981 doi: 10.1038/s41598-020-61673-0
|
[53] |
Ciarrocchi A, Unuchek D, Avsar A, et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der waals heterostructures. Nat Photonics, 2019, 13(2), 131 doi: 10.1038/s41566-018-0325-y
|
[54] |
Hagel J, Brem S, Malic E. Electrical tuning of moiré excitons in MoSe 2 bilayers. 2D Mater, 2023, 10(1), 014013 doi: 10.1088/2053-1583/aca916
|
[55] |
Lu Z G, Rhodes D, Li Z P, et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe 2. 2D Mater, 2020, 7(1), 015017 doi: 10.1088/2053-1583/ab5614
|
[56] |
Robert C, Han B, Kapuscinski P, et al. Measurement of the spin-forbidden dark excitons in MoS 2 and MoSe 2 monolayers. Nat Commun, 2020, 11(1), 4037 doi: 10.1038/s41467-020-17608-4
|
[57] |
Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 2013, 4(1), 1474 doi: 10.1038/ncomms2498
|
[58] |
Tang Y H, Gu J, Liu S, et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat Nanotechnol, 2021, 16(1), 52 doi: 10.1038/s41565-020-00783-2
|
[59] |
Shim G W, Yoo K, Seo S B, et al. Large-area single-layer MoSe 2 and its van der waals heterostructures. ACS Nano, 2014, 8(7), 6655 doi: 10.1021/nn405685j
|
[60] |
Du W N, Zhang S A, Zhang Q, et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 2019, 31(45), 1804894 doi: 10.1002/adma.201804894
|
[61] |
Zhao L Y, Shang Q Y, Li M L, et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res, 2021, 14(6), 1937 doi: 10.1007/s12274-020-3073-5
|
[62] |
Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 1946, 69, 37 doi: 10.1103/PhysRev.69.37
|
[63] |
Shang J Z, Cong C X, Wang Z L, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun, 2017, 8(1), 543 doi: 10.1038/s41467-017-00743-w
|
[64] |
Lozano G, Rodriguez S R, Verschuuren M A, et al. Metallic nanostructures for efficient LED lighting. Light Sci Appl, 2016, 5(6), e16080 doi: 10.1038/lsa.2016.80
|
[65] |
Schuler B, Cochrane K A, Kastl C, et al. Electrically driven photon emission from individual atomic defects in monolayer WS 2. Sci Adv, 2020, 6(38), eabb5988 doi: 10.1126/sciadv.abb5988
|
[66] |
Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 2005, 95(1), 013904 doi: 10.1103/PhysRevLett.95.013904
|
[67] |
Wang Z, Dong Z G, Gu Y H, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 2016, 7(1), 11283 doi: 10.1038/ncomms11283
|
[68] |
Pelton M. Modified spontaneous emission in nanophotonic structures. Nat Photonics, 2015, 9(7), 427 doi: 10.1038/nphoton.2015.103
|
[69] |
Kim J H, Lee H S, An G H, et al. Dielectric nanowire hybrids for plasmon-enhanced light−matter interaction in 2D semiconductors. ACS Nano, 2020, 14(9), 11985 doi: 10.1021/acsnano.0c05158
|
[70] |
Husko C, Kang J, Moille G, et al. Silicon-phosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett, 2018, 18(10), 6515 doi: 10.1021/acs.nanolett.8b03037
|
[71] |
Gerard J M, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J Light Technol, 1999, 17(11), 2089 doi: 10.1109/50.802999
|
[72] |
Lepeshov S, Krasnok A, Alù A. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. Nanotechnology, 2019, 30(25), 254004 doi: 10.1088/1361-6528/ab0daf
|
[73] |
Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett, 1992, 69(23), 3314 doi: 10.1103/PhysRevLett.69.3314
|
[74] |
Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation. Rev Mod Phys, 2010, 82(2), 1489 doi: 10.1103/RevModPhys.82.1489
|
[75] |
Lackner L, Dusel M, Egorov O A, et al. Tunable exciton-polaritons emerging from WS 2 monolayer excitons in a photonic lattice at room temperature. Nat Commun, 2021, 12(1), 4933 doi: 10.1038/s41467-021-24925-9
|
[76] |
Wurdack M, Estrecho E, Todd S, et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat Commun, 2021, 12(1), 5366 doi: 10.1038/s41467-021-25656-7
|
[77] |
Jiang Z J, Ren A, Yan Y L, et al. Exciton-polaritons and their bose-einstein condensates in organic semiconductor microcavities. Adv Mater, 2022, 34(4), 2106095 doi: 10.1002/adma.202106095
|
[78] |
Munkhbat B, Baranov D G, Stührenberg M, et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics, 2019, 6(1), 139 doi: 10.1021/acsphotonics.8b01194
|
[79] |
Shang J Z, Zhang X Y, Zhang V L, et al. Exciton-photon interactions in two-dimensional semiconductor microcavities. ACS Photonics, 2023, 10, 7, 2064 doi: 10.1021/acsphotonics.2c01541
|
[80] |
Liu X Z, Galfsky T, Sun Z, et al. Strong light−matter coupling in two-dimensional atomic crystals. Nat Photonics, 2015, 9(1), 30 doi: 10.1038/nphoton.2014.304
|
[81] |
Li Q Y, Alfrey A, Hu J Q, et al. Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat Commun, 2023, 14(1), 1837 doi: 10.1038/s41467-023-37500-1
|
[82] |
Dufferwiel S, Lyons T P, Solnyshkov D D, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics, 2017, 11(8), 497 doi: 10.1038/nphoton.2017.125
|
[83] |
Ajayi O A, Ardelean J V, Shepard G D, et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater, 2017, 4(3), 031011 doi: 10.1088/2053-1583/aa6aa1
|
[84] |
Del Pozo-Zamudio O, Genco A, Schwarz S, et al. Electrically pumped WSe 2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities. 2D Mater, 2020, 7(3), 031006 doi: 10.1088/2053-1583/ab8542
|
[85] |
Slootsky M, Liu X Z, Menon V M, et al. Room temperature frenkel-wannier-mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys Rev Lett, 2014, 112(7), 076401 doi: 10.1103/PhysRevLett.112.076401
|
[86] |
Zheng D, Zhang S P, Deng Q, et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe 2. Nano Lett, 2017, 17(6), 3809 doi: 10.1021/acs.nanolett.7b01176
|
[87] |
Sun J W, Li Y, Hu H T, et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13(8), 4408 doi: 10.1039/D0NR08592H
|
[88] |
Wen J X, Wang H, Wang W L, et al. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett, 2017, 17(8), 4689 doi: 10.1021/acs.nanolett.7b01344
|
[89] |
Liu W J, Lee B, Naylor C H, et al. Strong exciton-plasmon coupling in MoS 2 coupled with plasmonic lattice. Nano Lett, 2016, 16(2), 1262 doi: 10.1021/acs.nanolett.5b04588
|
[90] |
Petrić M M, Kremser M, Barbone M, et al. Tuning the optical properties of a MoSe 2 monolayer using nanoscale plasmonic antennas. Nano Lett, 2022, 22(2), 561 doi: 10.1021/acs.nanolett.1c02676
|
[91] |
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe 2 monolayer. Nat Commun, 2016, 7(1), 13328 doi: 10.1038/ncomms13328
|
[92] |
Hu F R, Fei Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv Opt Mater, 2020, 8(5), 1901003 doi: 10.1002/adom.201901003
|
[93] |
Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B, 2007, 76(16), 165415 doi: 10.1103/PhysRevB.76.165415
|
[94] |
Lundt N, Nagler P, Nalitov A, et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe 2 monolayer. 2D Mater, 2017, 4(2), 025096 doi: 10.1088/2053-1583/aa6ef2
|
[95] |
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16(2), 182 doi: 10.1038/nmat4792
|
[96] |
Guo X D, Lyu W, Chen T H, et al. Polaritons in van der waals heterostructures. Adv Mater, 2023, 35, 2201856 doi: 10.1002/adma.202201856
|
[97] |
Liu D S, Wu J A, Xu H X, et al. Emerging light-emitting materials for photonic integration. Adv Mater, 2021, 33(4), 2003733 doi: 10.1002/adma.202003733
|
[98] |
Wu J H, Ma H, Yin P, et al. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci, 2021, 1(4), 2000053 doi: 10.1002/smsc.202000053
|
[99] |
Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108(19), 196802 doi: 10.1103/PhysRevLett.108.196802
|
[100] |
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
|
[101] |
Gu J, Chakraborty B, Khatoniar M, et al. A room-temperature polariton light-emitting diode based on monolayer WS 2. Nat Nanotechnol, 2019, 14(11), 1024 doi: 10.1038/s41565-019-0543-6
|
[102] |
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe 2 p-n junctions. Nat Nanotechnol, 2014, 9(4), 268 doi: 10.1038/nnano.2014.26
|
[103] |
Aftab S, Hegazy H H, Iqbal M Z, et al. Recent advances in dynamic homojunction PIN diodes based on 2D materials. Adv Mater Interfaces, 2023, 10(6), 2201937 doi: 10.1002/admi.202201937
|
[104] |
Huang J K, Pu J A, Hsu C L, et al. Large-area synthesis of highly crystalline WSe 2 monolayers and device applications. ACS Nano, 2014, 8(1), 923 doi: 10.1021/nn405719x
|
[105] |
Chang Y H, Zhang W J, Zhu Y H, et al. Monolayer MoSe 2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8(8), 8582 doi: 10.1021/nn503287m
|
[106] |
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and air-stable single-layer WS 2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5(1), 10699 doi: 10.1038/srep10699
|
[107] |
Sajid A, Ford M J, Reimers J R. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep Prog Phys, 2020, 83(4), 044501 doi: 10.1088/1361-6633/ab6310
|
[108] |
Cai J M, Retzker A, Jelezko F, et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat Phys, 2013, 9(3), 168 doi: 10.1038/nphys2519
|
[109] |
Lee J Y, Leong V, Kalashnikov D, et al. Integrated single photon emitters. AVS Quantum Sci, 2020, 2(3), 031701 doi: 10.1116/5.0011316
|
[110] |
Arakawa Y, Holmes M J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 2020, 7(2), 021309 doi: 10.1063/5.0010193
|
[111] |
Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3(5), 38 doi: 10.1038/s41578-018-0008-9
|
[112] |
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79
|
[113] |
Peng L T, Chan H, Choo P, et al. Creation of single-photon emitters in WSe 2 monolayers using nanometer-sized gold tips. Nano Lett, 2020, 20(8), 5866 doi: 10.1021/acs.nanolett.0c01789
|
[114] |
Parto K, Azzam S I, Banerjee K, et al. Defect and strain engineering of monolayer WSe 2 enables site-controlled single-photon emission up to 150 K. Nat Commun, 2021, 12(1), 3585 doi: 10.1038/s41467-021-23709-5
|
[115] |
Dass C K, Khan M A, Clark G, et al. Ultra-long lifetimes of single quantum emitters in monolayer WSe 2/hBN heterostructures. Adv Quantum Technol, 2019, 2(5-6), 1900022 doi: 10.1002/qute.201900022
|
[116] |
Michaelis de Vasconcellos S, Wigger D, Wurstbauer U, et al. Single-photon emitters in layered van der waals materials. Phys Status Solidi B, 2022, 259(4), 2100566 doi: 10.1002/pssb.202100566
|
[117] |
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe 2 structures. Nat Nanotechnol, 2015, 10(6), 503 doi: 10.1038/nnano.2015.67
|
[118] |
Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe 2. Nat Nanotechnol, 2015, 10(6), 491 doi: 10.1038/nnano.2015.60
|
[119] |
Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe 2. 2D Mater, 2016, 3(2), 025038 doi: 10.1088/2053-1583/3/2/025038
|
[120] |
Chakraborty C, Goodfellow K M, Nick Vamivakas A. Localized emission from defects in MoSe 2 layers. Opt Mater Express, 2016, 6(6), 2081 doi: 10.1364/OME.6.002081
|
[121] |
Baek H, Brotons-Gisbert M, Koong Z X, et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci Adv, 2020, 6(37), eaba8526 doi: 10.1126/sciadv.aba8526
|
[122] |
|
[123] |
Deng H, Weihs G, Snoke D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci, 2003, 100(26), 15318 doi: 10.1073/pnas.2634328100
|
[124] |
Wang C Y, Kang Z, Zheng Z, et al. Monolayer MoSe 2/NiO van der Waals heterostructures for infrared light-emitting diodes. J Mater Chem C, 2019, 7(43), 13613 doi: 10.1039/C9TC04481G
|
[125] |
Chen Z X, Liu H Q, Chen X C, et al. Wafer-size and single-crystal MoSe 2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl Mater Interfaces, 2016, 8(31), 20267 doi: 10.1021/acsami.6b04768
|