J. Semicond. > 2018, Volume 39 > Issue 1 > 011008

Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi and Jin-Seong Park

+ Author Affiliations

 Corresponding author: Prof. Jin-Seong Park ( jsparklime@hanyang.ac.kr)

DOI: 10.1088/1674-4926/39/1/011008

PDF

Turn off MathJax

Abstract: The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.

Key words: atomic layer deposition (ALD)oxide semiconductorthin film transistorflexible devicemechanical stress



[1]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inform Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[2]
Nakajima Y, Takei T, Motomura G, et al. Flexible AMOLED display using an oxide-TFT backplane and inverted OLEDs. Photonics Conference (IPC), IEEE, 2014: 42
[3]
Choi M C, Kim Y, Ha C S. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33581
[4]
Heremans P, Tripathi A K, de Jamblinne de Meux A, et al. Mechanical and electronic properties of thin‐film transistors on plastic, and their integration in flexible electronic applications. Adv Mater, 2016, 28: 4266 doi: 10.1002/adma.v28.22
[5]
Street R A. Thin film transistors. Adv Mater, 2009, 21(20): 2007 doi: 10.1002/adma.v21:20
[6]
Powell M J. The physics of amorphous-silicon thin-film transistors. IEEE Trans Electron Devices, 1989, 36(12): 2753 doi: 10.1109/16.40933
[7]
Nathan A, Kumar A, Sakariya K, et al. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J Solid-State Circuits, 2004, 39(9): 1477 doi: 10.1109/JSSC.2004.829373
[8]
Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39(7): 2643 doi: 10.1039/b909902f
[9]
Dimitrakopoulos C D, Malenfant P R. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2): 99 doi: 10.1002/(ISSN)1521-4095
[10]
Matters M, De Leeuw D, Herwig P, et al. Bias-stress induced instability of organic thin film transistors. Synthetic Metals, 1999, 102(1–3): 998 doi: 10.1016/S0379-6779(98)01162-X
[11]
Gomes H L, Stallinga P, Dinelli F, et al. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl Phys Lett, 2004, 84(16): 3184 doi: 10.1063/1.1713035
[12]
Powell M. Charge trapping instabilities in amorphous silicon‐silicon nitride thin‐film transistors. Appl Phys Lett, 1983, 43(6): 597 doi: 10.1063/1.94399
[13]
Theiss S, Wagner S. Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett, 1996, 17(12): 578 doi: 10.1109/55.545776
[14]
Serikawa T, Omata F. High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans Electron Devices, 2002, 49(5): 820 doi: 10.1109/16.998590
[15]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[16]
Kenji N, Hiromichi O, Akihiro T, et al. Room-temperature fabrication of transparent f1 exible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488 doi: 10.1038/nature03090
[17]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[18]
Xingwei D, Hao Z, He D, et al. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator. Superlattices Microstruct, 2014, 76: 156 doi: 10.1016/j.spmi.2014.10.007
[19]
Kenji N, Hiromichi O, Kazushige U, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269 doi: 10.1126/science.1083212
[20]
Han D D, Zhang Y, Cong Y Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[21]
Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6): 581 doi: 10.1016/j.progpolymsci.2007.11.004
[22]
Ok K C, Ko Park S H, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[23]
Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91(11): 113505 doi: 10.1063/1.2783961
[24]
Bayraktaroglu B, Leedy K, Neidhard R. Microwave ZnO thin-film transistors. IEEE Electron Device Lett, 2008, 29(9): 1024 doi: 10.1109/LED.2008.2001635
[25]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[26]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 1692, 32(12): 1692
[27]
Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today, 2014, 17(5): 236 doi: 10.1016/j.mattod.2014.04.026
[28]
Kim H, Maeng W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009, 517(8): 2563 doi: 10.1016/j.tsf.2008.09.007
[29]
Seol Y, Noh H, Lee S, et al. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors. Appl Phys Lett, 2008, 93(1): 244
[30]
Seol Y, Park J, Tien N, et al. Reduction of electrical hysteresis in cyclically bent organic field effect transistors by incorporating multistack hybrid gate dielectrics. J Electrochem Soc, 2010, 157(11): H1046 doi: 10.1149/1.3489944
[31]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[32]
Carcia P, McLean R, Groner M, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys, 2009, 106(2): 023533 doi: 10.1063/1.3159639
[33]
Wu D S, Chen T N, Lay E, et al. Transparent barrier coatings on high temperature resisting polymer substrates for flexible electronic applications. J Electrochem Soc, 2010, 157(2): C47 doi: 10.1149/1.3261761
[34]
Sykes G F, St Clair A K. The effect of molecular structure on the gas transmission rates of aromatic polyimides. J Appl Polym Sci, 1986, 32(2): 3725 doi: 10.1002/app.1986.070320228
[35]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[36]
Hekmatshoar B, Kattamis A Z, Cherenack K H, et al. Reliability of active-matrix organic light-emitting-diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic. IEEE Electron Device Lett, 2008, 29(1): 63 doi: 10.1109/LED.2007.910800
[37]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[38]
Kim Y H, Chung C H, Moon J, et al. Oxide-silicon-oxide buffer structure for ultralow temperature polycrystalline silicon thin-film transistor on plastic substrate. IEEE Electron Device Lett, 2006, 27(7): 579 doi: 10.1109/LED.2006.877713
[39]
Yun S J, Ko Y W, Lim J W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl Phys Lett, 2004, 85(21): 4896 doi: 10.1063/1.1826238
[40]
Ghosh A, Gerenser L, Jarman C, et al. Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett, 2005, 86(22): 223503 doi: 10.1063/1.1929867
[41]
Murley D, French I, Deane S, et al. The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride. J Non-cryst Solids, 1996, 198: 1058
[42]
Smith D L, Alimonda A S, Chen C C, et al. Mechanism of SiNxHy deposition from NH3–SiH4 plasma. J Electrochem Soc, 1990, 137(2): 614 doi: 10.1149/1.2086517
[43]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[44]
Sheng J, Choi D W, Lee S H, et al. Performance modulation of transparent ALD indium oxide films on flexible substrates: transition between metal-like conductor and high performance semiconductor states. J Mater Chem C, 2016, 4(32): 7571 doi: 10.1039/C6TC01199C
[45]
Jeong H J, Han K L, Ok K C, et al. Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. J Inform Display, 2017, 18: 87 doi: 10.1080/15980316.2017.1294116
[46]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous ingazno thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[47]
Jeong J K, Jin D U, Shin H S, et al. Flexible full-color AMOLED on ultrathin metal foil. IEEE Electron Device Lett, 2007, 28(5): 389 doi: 10.1109/LED.2007.895449
[48]
Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9(12): 1015 doi: 10.1038/nmat2896
[49]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[50]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[51]
Munzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[52]
Park M J, Yun D J, Ryu M K, et al. Device characteristics comparisons for the InGaZnO thin film transistors fabricated on two-type surfaces of the plastic poly (ethylene naphthalate) substrates with hybrid barrier layers. J Vac Sci Technol B, 2015, 33(5): 051209 doi: 10.1116/1.4929414
[53]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Interf, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[54]
Sheng J, Park J, Choi D W, et al. A study on the electrical properties of atomic layer deposition grown InOx on flexible substrates with respect to N2O plasma treatment and the associated thin-film transistor behavior under repetitive mechanical stress. ACS Appl Mater Interf, 2016, 8(45): 31136 doi: 10.1021/acsami.6b11815
[55]
Lee H E, Kim S, Ko J, et al. Skin‐like oxide thin‐film transistors for transparent displays. Adv Funct Mater, 2016, 26(34): 6170
[56]
Li H U, Jackson T N. Flexibility testing strategies and apparatus for flexible electronics. IEEE Trans Electron Devices, 2016, 63(5): 1934 doi: 10.1109/TED.2016.2545706
[57]
Pyshkin S L, Ballato J. Optoelectronics: advanced materials and devices. Croatia: InTech Rijeka, 2013
[58]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[59]
Lin Y Y, Hsu C C, Tseng M H, et al. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl Mater Interf, 2015, 7(40): 22610 doi: 10.1021/acsami.5b07278
[60]
Nayak P K, Wang Z, Anjum D H, et al. Highly stable thin film transistors using multilayer channel structure. Appl Phys Lett, 2015, 106(10): 103505 doi: 10.1063/1.4914971
[61]
Chung Y J, Choi W J, Kang S G, et al. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J Mater Chem C, 2014, 2(43): 9274 doi: 10.1039/C4TC01727G
[62]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[63]
Ahn C H, Hee Kim S, Gu Yun M, et al. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition. Appl Phys Lett, 2014, 105(22): 223513 doi: 10.1063/1.4901732
[64]
Cho S W, Yun M G, Ahn C H, et al. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences. Electron Mater Lett, 2015, 11(2): 198 doi: 10.1007/s13391-014-4305-1
[65]
Geng Y, Yang W, Lu H L, et al. Mobility enhancement and OFF current suppression in atomic-layer-deposited ZnO thin-film transistors by post annealing in O2. IEEE Electron Device Lett, 2014, 35(12): 1266 doi: 10.1109/LED.2014.2365194
[66]
Ahn C H, Kim S H, Kim Y K, et al. Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin Solid Films, 2015, 584: 336 doi: 10.1016/j.tsf.2015.01.017
[67]
Lee S J, Hwang C S, Pi J E, et al. High performance amorphous multilayered ZnO–SnO2 heterostructure thin-film transistors: Fabrication and characteristics. ETRI J, 2015, 37(6): 1135 doi: 10.4218/etrij.15.0114.0743
[68]
Ahn B D, Choi D W, Choi C, et al. The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Appl Phys Lett, 2014, 105(9): 092103 doi: 10.1063/1.4895102
[69]
Kim J I, Hwan J K, Yoon J H, et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface. Appl Phys Lett, 2011, 99(12): 122102 doi: 10.1063/1.3643054
[70]
Park J C, Kim S, Kim S, et al. Highly stable transparent amorphous oxide semiconductor thin‐film transistors having double‐stacked active layers. Adv Mater, 2010, 22(48): 5512 doi: 10.1002/adma.v22.48
[71]
Yang J, Park J K, Kim S, et al. Atomic‐layer‐deposited ZnO thin‐film transistors with various gate dielectrics. Phys Status Solidi A, 2012, 209(10): 2087 doi: 10.1002/pssa.v209.10
[72]
Weiher R, Ley R. Optical properties of indium oxide. J Appl Phys, 1966, 37(1): 299 doi: 10.1063/1.1707830
[73]
Kawazoe H, Ueda N, Un’no H, et al. Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation. J Appl Phys, 1994, 76(12): 7935 doi: 10.1063/1.357904
[74]
Kumaresan Y, Pak Y, Lim N. Highly bendable In–Ga–ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci Rep, 2016, 6: 37764 doi: 10.1038/srep37764
[75]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[76]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[77]
Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[78]
Jin D U, Kim T W, Koo H W, et al. In 47.1: Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure. SID Symposium Digest of Technical Papers, 2010: 703
[79]
Münzenrieder N, Cherenack K, Tröster G. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain. Eur Phys J Appl Phys, 2011, 55(2): 23904 doi: 10.1051/epjap/2011100416
[80]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[81]
Kim Y H, Lee E, Um J G, et al. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics. Sci Rep, 2016, 6: 25734 doi: 10.1038/srep25734
[82]
Münzenrieder N, Kunigunde H C, et al. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[83]
Li X, Billa M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[84]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3: 021303 doi: 10.1063/1.4953034
[85]
Billah M M, Hasan M M, Chowdhury M H, et al. Excellent mechanical bending stability of flexible a-IGZO TFT by dual gate dual sweep using TCAD simulation. Soc Inform Display, 2016, 47(1): 1155
[86]
Rockett A. The materials science of semiconductors. Springer Science & Business Media, 2007
[87]
Kohan A, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Phys Rev B, 2000, 61(22): 15019 doi: 10.1103/PhysRevB.61.15019
[88]
Look D C, Farlow G C, Reunchan P, et al. Evidence for native-defect donors in n-type ZnO. Phys Rev Lett, 2005, 95(22): 225502 doi: 10.1103/PhysRevLett.95.225502
[89]
Kim Y S, Park C. Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. Phys Rev Lett, 2009, 102(8): 086403 doi: 10.1103/PhysRevLett.102.086403
[90]
de Meux A d J, Pourtois G, Genoe J, et al. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects. J Phys D, 2015, 48(43): 435104 doi: 10.1088/0022-3727/48/43/435104
[91]
Hasan M M, Billah M M, Naik M N, et al. Bending stress induced performance change in plastic oxide thin-film transistor and recovery by annealing at 300 °C. IEEE Electron Device Lett, 2017, 38(8): 1035 doi: 10.1109/LED.2017.2718565
Fig. 1.  (Color online) Schematic diagram of general growth process of ALD.

Fig. 2.  (Color online) (a) Schematic diagram of top-gate and bottom contact a-IGZO TFT, transfer characteristics with different buffer fabrication process (detailed fabrication process in supporting information) that (b) using water/ozone as reactant, (c) under NBTS (VG = −20 V, temperature = 60 °C and time = 3000 s) in air ambient (relative humidity, RH = 30%), (d) device density of states of near-conduction band for TFTs with different reactant and measured in RH 30% and vacuum.

Fig. 3.  (Color online) (a) Structure of a-IGZO TFT fabricated on polyimide substrate with different buffer materials and stack structures (detail fabrication process in supporting information) and (b) relative transfer performance. (c) Schematic cross-sectional view of the fabricated a-IGZO TFT on a flexible PEN substrate with inorganic/organic buffer layer. (d) IDSVGS transfer curves of organic and inorganic/organic buffer layer based TFTs[22, 43].

Fig. 4.  (Color online) (a) Schematic illustration of the a-IGZO TFT on polyimide substrate with bottom gate and top contact structures (detail fabrication process in supporting information). (b) Strain and stress applied to thin Al2O3 layer in organic/inorganic hybrid gate dielectric with varying Al2O3 thicknesses. (c) Cross-sectional FIB/SEM images of the a-IGZO TFT with the PVP (400 nm)/Al2O3 (40 nm) hybrid gate dielectric after 105 bending cycles in tension mode. (d) Transfer characteristics of cyclically bent a-IGZO TFTs with PVP (400 nm)/Al2O3 (20 nm) hybrid gate dielectrics, PVP (400 nm)/Al2O3 (30 nm) hybrid gate dielectrics, and PVP (400 nm)/Al2O3 (40 nm) hybrid gate dielectrics[49]. (copyright 2014 Elsevier B.V.)

Fig. 5.  (Color online) (a) Homogeneous laminated active layer deposited by ALD, (b) bi-layer, and (c) gradient active layer by ALD for oxide semiconductor TFTs[6364] (detailed fabrication process in supplement information).

Fig. 6.  (Color online) High performance flexible ALD oxide TFT with active layer as (a) InOx with N2O plasma post treatment (copyright 2016, American Chemical Society) and (b) IZO that in term of growth temperature dependence (copyright 2016, American Chemical Society)[53, 54].

Fig. 7.  (Color online) (a) Flexible ALD InOx TFTs bending test over bending jig with different bending radius from 15 to 5 mm, (b) Example picture of the flexible TFT measurement with bending jig. (c) Evolution of the transfer performance of flexible IZO TFT fabricated on polyimide substrates as a function of bending cycles and strains[53, 54].

Fig. 8.  (Color online) (a) a-IGZO TFT performance for different types of stress (tensile/compressive) on the 50 μm PI substrate, and (b) schematics of bent InOx TFTs for a bending axis vertical to (for case I) and parallel to (for case II) device current, and transfer characteristics of InOx TFTs under repeated bending cycles with different bending cases (copyright 2016, American Chemical Society)[54, 79].

Table 1.   Summary of recent reports for ALD buffer layer based flexible oxide TFTs.

Substrate Buffer layer Method Active layer Mobility Strain/radius Bending cycle Ref.
PI SiOx, SiNx/Al2O3 PECVD/ALD IGZO 14.88 15 mm 10000 [22]
Polyethylene naphthalate Organic/Al2O3 ALD IGZO 15.5 3.3 mm 10000 [43]
PI SiNx/SiO2/Al2O3 ALD InOx 15 5 mm (0.4% tens.) 10000 [44]
PI Al2O3 ALD a-IGZO 12.5 2 mm [45]
DownLoad: CSV

Table 2.   Transfer performance parameters comparison for device with different buffer layers[43].

Device Mobility (cm2/(V·s)) Threshold voltage (V) Subthreshold swing (V/dec) On/off ratio
No buffer 1.11 9.4 0.4 3.1 × 107
Organic buffer 14.4 2.8 0.4 1.5 × 109
Hybrid buffer 15.5 4.1 0.2 4.7 × 109
DownLoad: CSV

Table 3.   Summary of recent reports for ALD gate insulator based flexible oxide TFTs.

Substrate Gate insulator Method Ative layer Mobility Strain/radius Bending cycle Ref.
PI Al2O3 ALD a-IGZO 7.5 3.5 mm [50]
PI PVP/Al2O3 ALD IGZO 8.39 10 mm 100000 [49]
PI Al2O3 ALD IGZO 10.5 6 mm [51]
Polyethylene naphthalate Al2O3 ALD IGZO 15.5 3 mm 10000 [52]
PI Al2O3 ALD IZO 42.1 2 mm 5000 [53]
PI Al2O3 ALD InOx 9.7 5 mm 10000 [54]
PET Al2O3 ALD IZO 40.1 7.5 mm 5000 [55]
PI Al2O3 ALD ZnO 1.75 mm (0.14% comp.) 90000 [56]
PI Al2O3 ALD InOx 15 5 mm (0.4% tens.) 10000 [44]
PI Al2O3 ALD a-IGZO 12.5 2 mm [45]
DownLoad: CSV

Table 4.   Transfer performance parameters under mechanical stress by jig bars of different radius[54].

Bending radius (mm) Strain Vth (V) μsat (cm2/(V·s)) S.S. (V/decade) Hysteresis (V) ION/IOFF
0 0 −0.22 9.7 0.87 0.9 9.4 × 109
15 0.12% −0.49 8.77 0.96 1.23 4.6 × 109
10 0.18% −0.72 8.38 0.98 1.47 4.8 × 109
5 0.38% −1.46 8.09 0.97 1.87 4.8 × 109
DownLoad: CSV
[1]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inform Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[2]
Nakajima Y, Takei T, Motomura G, et al. Flexible AMOLED display using an oxide-TFT backplane and inverted OLEDs. Photonics Conference (IPC), IEEE, 2014: 42
[3]
Choi M C, Kim Y, Ha C S. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33581
[4]
Heremans P, Tripathi A K, de Jamblinne de Meux A, et al. Mechanical and electronic properties of thin‐film transistors on plastic, and their integration in flexible electronic applications. Adv Mater, 2016, 28: 4266 doi: 10.1002/adma.v28.22
[5]
Street R A. Thin film transistors. Adv Mater, 2009, 21(20): 2007 doi: 10.1002/adma.v21:20
[6]
Powell M J. The physics of amorphous-silicon thin-film transistors. IEEE Trans Electron Devices, 1989, 36(12): 2753 doi: 10.1109/16.40933
[7]
Nathan A, Kumar A, Sakariya K, et al. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J Solid-State Circuits, 2004, 39(9): 1477 doi: 10.1109/JSSC.2004.829373
[8]
Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39(7): 2643 doi: 10.1039/b909902f
[9]
Dimitrakopoulos C D, Malenfant P R. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2): 99 doi: 10.1002/(ISSN)1521-4095
[10]
Matters M, De Leeuw D, Herwig P, et al. Bias-stress induced instability of organic thin film transistors. Synthetic Metals, 1999, 102(1–3): 998 doi: 10.1016/S0379-6779(98)01162-X
[11]
Gomes H L, Stallinga P, Dinelli F, et al. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl Phys Lett, 2004, 84(16): 3184 doi: 10.1063/1.1713035
[12]
Powell M. Charge trapping instabilities in amorphous silicon‐silicon nitride thin‐film transistors. Appl Phys Lett, 1983, 43(6): 597 doi: 10.1063/1.94399
[13]
Theiss S, Wagner S. Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett, 1996, 17(12): 578 doi: 10.1109/55.545776
[14]
Serikawa T, Omata F. High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans Electron Devices, 2002, 49(5): 820 doi: 10.1109/16.998590
[15]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[16]
Kenji N, Hiromichi O, Akihiro T, et al. Room-temperature fabrication of transparent f1 exible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488 doi: 10.1038/nature03090
[17]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[18]
Xingwei D, Hao Z, He D, et al. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator. Superlattices Microstruct, 2014, 76: 156 doi: 10.1016/j.spmi.2014.10.007
[19]
Kenji N, Hiromichi O, Kazushige U, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269 doi: 10.1126/science.1083212
[20]
Han D D, Zhang Y, Cong Y Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[21]
Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6): 581 doi: 10.1016/j.progpolymsci.2007.11.004
[22]
Ok K C, Ko Park S H, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[23]
Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91(11): 113505 doi: 10.1063/1.2783961
[24]
Bayraktaroglu B, Leedy K, Neidhard R. Microwave ZnO thin-film transistors. IEEE Electron Device Lett, 2008, 29(9): 1024 doi: 10.1109/LED.2008.2001635
[25]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[26]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 1692, 32(12): 1692
[27]
Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today, 2014, 17(5): 236 doi: 10.1016/j.mattod.2014.04.026
[28]
Kim H, Maeng W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009, 517(8): 2563 doi: 10.1016/j.tsf.2008.09.007
[29]
Seol Y, Noh H, Lee S, et al. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors. Appl Phys Lett, 2008, 93(1): 244
[30]
Seol Y, Park J, Tien N, et al. Reduction of electrical hysteresis in cyclically bent organic field effect transistors by incorporating multistack hybrid gate dielectrics. J Electrochem Soc, 2010, 157(11): H1046 doi: 10.1149/1.3489944
[31]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[32]
Carcia P, McLean R, Groner M, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys, 2009, 106(2): 023533 doi: 10.1063/1.3159639
[33]
Wu D S, Chen T N, Lay E, et al. Transparent barrier coatings on high temperature resisting polymer substrates for flexible electronic applications. J Electrochem Soc, 2010, 157(2): C47 doi: 10.1149/1.3261761
[34]
Sykes G F, St Clair A K. The effect of molecular structure on the gas transmission rates of aromatic polyimides. J Appl Polym Sci, 1986, 32(2): 3725 doi: 10.1002/app.1986.070320228
[35]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[36]
Hekmatshoar B, Kattamis A Z, Cherenack K H, et al. Reliability of active-matrix organic light-emitting-diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic. IEEE Electron Device Lett, 2008, 29(1): 63 doi: 10.1109/LED.2007.910800
[37]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[38]
Kim Y H, Chung C H, Moon J, et al. Oxide-silicon-oxide buffer structure for ultralow temperature polycrystalline silicon thin-film transistor on plastic substrate. IEEE Electron Device Lett, 2006, 27(7): 579 doi: 10.1109/LED.2006.877713
[39]
Yun S J, Ko Y W, Lim J W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl Phys Lett, 2004, 85(21): 4896 doi: 10.1063/1.1826238
[40]
Ghosh A, Gerenser L, Jarman C, et al. Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett, 2005, 86(22): 223503 doi: 10.1063/1.1929867
[41]
Murley D, French I, Deane S, et al. The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride. J Non-cryst Solids, 1996, 198: 1058
[42]
Smith D L, Alimonda A S, Chen C C, et al. Mechanism of SiNxHy deposition from NH3–SiH4 plasma. J Electrochem Soc, 1990, 137(2): 614 doi: 10.1149/1.2086517
[43]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[44]
Sheng J, Choi D W, Lee S H, et al. Performance modulation of transparent ALD indium oxide films on flexible substrates: transition between metal-like conductor and high performance semiconductor states. J Mater Chem C, 2016, 4(32): 7571 doi: 10.1039/C6TC01199C
[45]
Jeong H J, Han K L, Ok K C, et al. Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. J Inform Display, 2017, 18: 87 doi: 10.1080/15980316.2017.1294116
[46]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous ingazno thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[47]
Jeong J K, Jin D U, Shin H S, et al. Flexible full-color AMOLED on ultrathin metal foil. IEEE Electron Device Lett, 2007, 28(5): 389 doi: 10.1109/LED.2007.895449
[48]
Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9(12): 1015 doi: 10.1038/nmat2896
[49]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[50]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[51]
Munzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[52]
Park M J, Yun D J, Ryu M K, et al. Device characteristics comparisons for the InGaZnO thin film transistors fabricated on two-type surfaces of the plastic poly (ethylene naphthalate) substrates with hybrid barrier layers. J Vac Sci Technol B, 2015, 33(5): 051209 doi: 10.1116/1.4929414
[53]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Interf, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[54]
Sheng J, Park J, Choi D W, et al. A study on the electrical properties of atomic layer deposition grown InOx on flexible substrates with respect to N2O plasma treatment and the associated thin-film transistor behavior under repetitive mechanical stress. ACS Appl Mater Interf, 2016, 8(45): 31136 doi: 10.1021/acsami.6b11815
[55]
Lee H E, Kim S, Ko J, et al. Skin‐like oxide thin‐film transistors for transparent displays. Adv Funct Mater, 2016, 26(34): 6170
[56]
Li H U, Jackson T N. Flexibility testing strategies and apparatus for flexible electronics. IEEE Trans Electron Devices, 2016, 63(5): 1934 doi: 10.1109/TED.2016.2545706
[57]
Pyshkin S L, Ballato J. Optoelectronics: advanced materials and devices. Croatia: InTech Rijeka, 2013
[58]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[59]
Lin Y Y, Hsu C C, Tseng M H, et al. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl Mater Interf, 2015, 7(40): 22610 doi: 10.1021/acsami.5b07278
[60]
Nayak P K, Wang Z, Anjum D H, et al. Highly stable thin film transistors using multilayer channel structure. Appl Phys Lett, 2015, 106(10): 103505 doi: 10.1063/1.4914971
[61]
Chung Y J, Choi W J, Kang S G, et al. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J Mater Chem C, 2014, 2(43): 9274 doi: 10.1039/C4TC01727G
[62]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[63]
Ahn C H, Hee Kim S, Gu Yun M, et al. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition. Appl Phys Lett, 2014, 105(22): 223513 doi: 10.1063/1.4901732
[64]
Cho S W, Yun M G, Ahn C H, et al. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences. Electron Mater Lett, 2015, 11(2): 198 doi: 10.1007/s13391-014-4305-1
[65]
Geng Y, Yang W, Lu H L, et al. Mobility enhancement and OFF current suppression in atomic-layer-deposited ZnO thin-film transistors by post annealing in O2. IEEE Electron Device Lett, 2014, 35(12): 1266 doi: 10.1109/LED.2014.2365194
[66]
Ahn C H, Kim S H, Kim Y K, et al. Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin Solid Films, 2015, 584: 336 doi: 10.1016/j.tsf.2015.01.017
[67]
Lee S J, Hwang C S, Pi J E, et al. High performance amorphous multilayered ZnO–SnO2 heterostructure thin-film transistors: Fabrication and characteristics. ETRI J, 2015, 37(6): 1135 doi: 10.4218/etrij.15.0114.0743
[68]
Ahn B D, Choi D W, Choi C, et al. The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Appl Phys Lett, 2014, 105(9): 092103 doi: 10.1063/1.4895102
[69]
Kim J I, Hwan J K, Yoon J H, et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface. Appl Phys Lett, 2011, 99(12): 122102 doi: 10.1063/1.3643054
[70]
Park J C, Kim S, Kim S, et al. Highly stable transparent amorphous oxide semiconductor thin‐film transistors having double‐stacked active layers. Adv Mater, 2010, 22(48): 5512 doi: 10.1002/adma.v22.48
[71]
Yang J, Park J K, Kim S, et al. Atomic‐layer‐deposited ZnO thin‐film transistors with various gate dielectrics. Phys Status Solidi A, 2012, 209(10): 2087 doi: 10.1002/pssa.v209.10
[72]
Weiher R, Ley R. Optical properties of indium oxide. J Appl Phys, 1966, 37(1): 299 doi: 10.1063/1.1707830
[73]
Kawazoe H, Ueda N, Un’no H, et al. Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation. J Appl Phys, 1994, 76(12): 7935 doi: 10.1063/1.357904
[74]
Kumaresan Y, Pak Y, Lim N. Highly bendable In–Ga–ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci Rep, 2016, 6: 37764 doi: 10.1038/srep37764
[75]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[76]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[77]
Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[78]
Jin D U, Kim T W, Koo H W, et al. In 47.1: Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure. SID Symposium Digest of Technical Papers, 2010: 703
[79]
Münzenrieder N, Cherenack K, Tröster G. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain. Eur Phys J Appl Phys, 2011, 55(2): 23904 doi: 10.1051/epjap/2011100416
[80]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[81]
Kim Y H, Lee E, Um J G, et al. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics. Sci Rep, 2016, 6: 25734 doi: 10.1038/srep25734
[82]
Münzenrieder N, Kunigunde H C, et al. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[83]
Li X, Billa M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[84]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3: 021303 doi: 10.1063/1.4953034
[85]
Billah M M, Hasan M M, Chowdhury M H, et al. Excellent mechanical bending stability of flexible a-IGZO TFT by dual gate dual sweep using TCAD simulation. Soc Inform Display, 2016, 47(1): 1155
[86]
Rockett A. The materials science of semiconductors. Springer Science & Business Media, 2007
[87]
Kohan A, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Phys Rev B, 2000, 61(22): 15019 doi: 10.1103/PhysRevB.61.15019
[88]
Look D C, Farlow G C, Reunchan P, et al. Evidence for native-defect donors in n-type ZnO. Phys Rev Lett, 2005, 95(22): 225502 doi: 10.1103/PhysRevLett.95.225502
[89]
Kim Y S, Park C. Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. Phys Rev Lett, 2009, 102(8): 086403 doi: 10.1103/PhysRevLett.102.086403
[90]
de Meux A d J, Pourtois G, Genoe J, et al. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects. J Phys D, 2015, 48(43): 435104 doi: 10.1088/0022-3727/48/43/435104
[91]
Hasan M M, Billah M M, Naik M N, et al. Bending stress induced performance change in plastic oxide thin-film transistor and recovery by annealing at 300 °C. IEEE Electron Device Lett, 2017, 38(8): 1035 doi: 10.1109/LED.2017.2718565
1. Kim, D., Yoo, K.S., Lee, C.-H. et al. High-throughput and performance InZnAlO thin film transistor on polyimide substrate via atmospheric pressure spatial atomic layer deposition. Journal of Alloys and Compounds, 2025. doi:10.1016/j.jallcom.2025.180031
2. Singh, A.K.. 2D Transition-Metal Dichalcogenides (TMDs): Fundamentals and Application. Materials Horizons: From Nature to Nanomaterials, 2025. doi:10.1007/978-981-96-0247-6
3. Gueye, I., Ueda, S., Ogura, A. et al. Direct Analysis of Stacked Au/Ti/In2O3/Al2O3/p+‑Si Transport Mechanisms Using Operando Hard X‑ray Photoelectron Spectroscopy. ACS Applied Electronic Materials, 2024, 6(5): 3237-3248. doi:10.1021/acsaelm.4c00049
4. Gulyaeva, I.A., Ivanisheva, A.P., Volkova, M.G. et al. Investigation of electrophysical, photo- and gas-sensitive properties of ZnO-SnO2sol-gel films. Journal of Advanced Dielectrics, 2024, 14(1): 2245002. doi:10.1142/S2010135X22450023
5. Chaabane, I., Rekik, W., Ghalla, H. et al. Crystal structure, optical characterization, conduction and relaxation mechanisms of a new hybrid compound (C6H9N2)2[Sb2Cl8]. RSC Advances, 2024, 14(5): 3588-3598. doi:10.1039/d3ra08885e
6. Nunes, D., Pimentel, A., Barquinha, P. et al. Flexible Devices Based on Metal Oxides: Achievements and Prospects. Flexible Devices Based on Metal Oxides: Achievements and Prospects, 2024. doi:10.1016/C2022-0-03085-3
7. Mohammad, A., Joshi, K.D., Rana, D. et al. Hollow-cathode plasma deposited vanadium oxide films: Metal precursor influence on growth and material properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42(1): 012406. doi:10.1116/6.0002988
8. Dargar, S.K., Dargar, A., Birla, S. et al. Performance Estimation of Multilayer-Stack-Channel IGZO-Based Thin-Film Transistor in Double-Gate Mode. Lecture Notes in Electrical Engineering, 2024. doi:10.1007/978-981-99-4795-9_8
9. Mohammad, A., Joshi, K.D., Rana, D. et al. Low-temperature synthesis of crystalline vanadium oxide films using oxygen plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41(3): 032405. doi:10.1116/6.0002383
10. Santo Domingo Peñaranda, J., Minjauw, M.M., Vandenbroucke, S.S.T. et al. Depositing ALD-oxides on MLD-metalcones: enhancing initial growth through O2 plasma densification. Dalton Transactions, 2023, 52(21): 7219-7224. doi:10.1039/d3dt00378g
11. Yang, B., Li, P., Chen, Z. et al. Effect of Titanium Cation Doping on the Performance of In2O3 Thin Film Transistors Grown via Atomic Layer Deposition. Coatings, 2023, 13(3): 605. doi:10.3390/coatings13030605
12. Zhou, K.-J., Chang, T.-C., Tai, M.-C. et al. Abnormal Threshold Voltage Shift and Sub-channel Generation in Top-Gate InGaZnO TFTs under Backlight Negative Bias Illumination Stress. ACS Applied Electronic Materials, 2023, 5(2): 1183-1188. doi:10.1021/acsaelm.2c01629
13. Jung, S.H., Yang, J.S., Cho, H.K. Ambipolar operation of progressively designed symmetric bidirectional transistors fabricated using single-channel vertical transistor and electrochemically prepared copper oxide. Materials Horizons, 2023, 10(4): 1373-1384. doi:10.1039/d2mh01413k
14. Allemang, C.R., Cho, T.H., Dasgupta, N.P. et al. Robustness of Passivated ALD Zinc Tin Oxide TFTs to Aging and Bias Stress. IEEE Transactions on Electron Devices, 2022, 69(12): 6776-6782. doi:10.1109/TED.2022.3216791
15. Lin, D., Li, X., Zhong, W. et al. Enhanced Electrical and Mechanical Performance of InSnZnO TFTs With Multifunctional Laminated Organic Passivation Layer. IEEE Transactions on Electron Devices, 2022, 69(11): 6146-6153. doi:10.1109/TED.2022.3204521
16. Lee, T.-Y., Chen, L.-Y., Lo, Y.-Y. et al. Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advancement, and Challenges. ACS Photonics, 2022, 9(9): 2905-2930. doi:10.1021/acsphotonics.2c00285
17. Gueye, I., Kobayashi, R., Ueda, S. et al. Operando hard X-ray photoelectron spectroscopy study of buried interface chemistry of Au/InO1.16C0.04/Al2O3/p+-Si stacks. Applied Surface Science, 2022. doi:10.1016/j.apsusc.2022.153272
18. Liu, J., Chen, Y., Ran, C. et al. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells. ACS Applied Materials and Interfaces, 2022, 14(30): 34189-34197. doi:10.1021/acsami.1c16124
19. Mohammad, A., Ilhom, S., Shukla, D. et al. In situ monitoring atomic layer doping processes for Al-doped ZnO layers: Competitive nature of surface reactions between metal precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40(4): 042401. doi:10.1116/6.0001772
20. Hong, T., Kim, K., Choi, S.-H. et al. Structural, Optical, and Electrical Properties of InOxThin Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Flexible Device Applications. ACS Applied Electronic Materials, 2022, 4(6): 3010-3017. doi:10.1021/acsaelm.2c00434
21. Zhao, P., Li, L., Chen, G. et al. Structural evolution of low-dimensional metal oxide semiconductors under external stress. Journal of Semiconductors, 2022, 43(4): 041105. doi:10.1088/1674-4926/43/4/041105
22. Cho, M.H., Choi, C.H., Jeong, J.K. Recent progress and perspectives on atomic-layer-deposited semiconducting oxides for transistor applications. Journal of the Society for Information Display, 2022, 30(3): 175-197. doi:10.1002/jsid.1096
23. Uvarov, A.V., Morozov, I.A., Baranov, A.I. et al. Plasma enhanced chemical vapor deposition of gallium phosphide at low temperature. Journal of Physics: Conference Series, 2021, 2103(1): 012122. doi:10.1088/1742-6596/2103/1/012122
24. Zhu, J., Zhao, R., Shi, J. et al. Metal Exchange and Diffusion during Atomic Layer Deposition of Cobalt and Nickel Sulfides. Chemistry of Materials, 2021, 33(23): 9403-9412. doi:10.1021/acs.chemmater.1c03394
25. Choi, W.-H., Kim, K., Jeong, S.-G. et al. The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications. IEEE Transactions on Electron Devices, 2021, 68(12): 6147-6153. doi:10.1109/TED.2021.3117749
26. Kovács, R.L., Gyöngyösi, S., Langer, G. et al. Effect of nanoscopic defects on barrier performance of thin films deposited by plasma-enhanced atomic layer deposition on flexible polymers. Thin Solid Films, 2021. doi:10.1016/j.tsf.2021.138960
27. Zhao, S., Yuan, G., Zhang, D. et al. Formation and elimination mechanism of thermal blistering in Al2O3/Si system. Journal of Materials Science, 2021, 56(31): 17478-17489. doi:10.1007/s10853-021-06441-9
28. Biswas, S., Decorse, P., Kim, H. et al. Organic planar diode with Cu electrode via modification of the metal surface by SAM of fluorobiphenyl based thiol. Applied Surface Science, 2021. doi:10.1016/j.apsusc.2021.149794
29. Le, M.N., Baeg, K.-J., Kim, K.-T. et al. Versatile Solution-Processed Organic–Inorganic Hybrid Superlattices for Ultraflexible and Transparent High-Performance Optoelectronic Devices. Advanced Functional Materials, 2021, 31(29): 2103285. doi:10.1002/adfm.202103285
30. Khong, Y.J., Niang, K.M., Han, S. et al. Effect of Plasma Treatment on Metal Oxide p–n Thin Film Diodes Fabricated at Room Temperature. Advanced Materials Interfaces, 2021, 8(10): 2100049. doi:10.1002/admi.202100049
31. Yang, L.-L., Qin, Y.-H., Wei, J.-T. et al. Research progress of Cu2Se thin film thermoelectric properties | [硒化亚铜薄膜热电性能研究进展]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(7): 076802. doi:10.7498/aps.70.20201677
32. Patra, P.C., Mohapatra, Y.N. Dielectric constant of thin film graphitic carbon nitride (g-C3N4) and double dielectric Al2O3/g-C3N4. Applied Physics Letters, 2021, 118(10): 103501. doi:10.1063/5.0045911
33. Napari, M., Huq, T.N., Meeth, D.J. et al. Role of ALD Al2O3Surface Passivation on the Performance of p-Type Cu2O Thin Film Transistors. ACS Applied Materials and Interfaces, 2021, 13(3): 4156-4164. doi:10.1021/acsami.0c18915
34. Jung, S.Y., Kim, J.Y., Choe, G. et al. Enhanced contact properties of spray-coated AgNWs source and drain electrodes in oxide thin-film transistors. Current Applied Physics, 2021. doi:10.1016/j.cap.2020.10.020
35. Avelar-Muñoz, F., Berumen, J.A., Aguilar-Frutis, M.A. et al. Enhancement on carrier mobility in amorphous indium tin oxynitride (ITON) thin films. Journal of Alloys and Compounds, 2020. doi:10.1016/j.jallcom.2020.155353
36. Jo, J.-W., Kang, S.-H., Heo, J.S. et al. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry - A European Journal, 2020, 26(42): 9126-9156. doi:10.1002/chem.202000090
37. Vempati, S., Ranjith, K.S., Topuz, F. et al. Electrospinning Combined with Atomic Layer Deposition to Generate Applied Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3(7): 6186-6209. doi:10.1021/acsanm.0c01120
38. Zhao, R., Wang, X. Recent advances in mechanism investigation of atomic layer deposition by in situ photoelectron spectroscopy | [原子层沉积机理的原位光电子能谱研究进展]. Scientia Sinica Chimica, 2020, 50(6): 669-680. doi:10.1360/SSC-2020-0037
39. Shaheen, A., Othman, W., Ali, M. et al. Catalyst-induced gas-sensing selectivity in ZnO nanoribbons: Ab-initio investigation at room temperature. Applied Surface Science, 2020. doi:10.1016/j.apsusc.2019.144602
40. Choi, J.-W., Oh, J., Ngoc Van, T.T. et al. Tin oxysulfide composite thin films based on atomic layer deposition of tin sulfide and tin oxide using Sn(dmamp)2 as Sn precursor. Ceramics International, 2020, 46(4): 5109-5118. doi:10.1016/j.ceramint.2019.10.254
41. Kim, D.W., Min, S.-Y., Lee, Y. et al. Transparent Flexible Nanoline Field-Effect Transistor Array with High Integration in a Large Area. ACS Nano, 2020, 14(1): 907-918. doi:10.1021/acsnano.9b08199
42. Jiang, Q., Yang, J., Hing, P. et al. Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric composites. Materials Advances, 2020, 1(5): 1038-1054. doi:10.1039/d0ma00278j
43. Zhou, B.Z., Liu, M.J., Wen, Y.W. et al. Atomic layer deposition for quantum dots based devices. Opto-Electronic Advances, 2020, 3(9): 1-14. doi:10.29026/oea.2020.190043
44. Lee, I.S., Na, J.W., Kang, B.H. et al. Improvement of electrical stability of In-Ga-Zn-O thin-film transistors by incorporation of polytetrafluoroethylene in the back channel region. Digest of Technical Papers - SID International Symposium, 2020, 51(1): 1334-1337. doi:10.1002/sdtp.14130
45. Wu, J., Yang, J., Yang, X. et al. Low-voltage Hf-ZnO thin film transistors with Ag nanowires gate electrode and their application in logic circuit. IEEE Journal of the Electron Devices Society, 2020. doi:10.1109/JEDS.2020.2971510
46. Veeralingam, S., Badhulika, S. 2D - SnSe2 nanoflakes on paper with 1D - NiO gate insulator based MISFET as multifunctional NIR photo switch and flexible temperature sensor. Materials Science in Semiconductor Processing, 2020. doi:10.1016/j.mssp.2019.104738
47. Uvarov, A.V., Gudovskikh, A.S., Vasilev, A.A. Electronic transport properties of microcrystalline GaP. Journal of Physics: Conference Series, 2019, 1410(1): 012207. doi:10.1088/1742-6596/1410/1/012207
48. Kim, M., Jeong, H.-J., Sheng, J. et al. The impact of plasma-enhanced atomic layer deposited ZrSiOx insulators on low voltage operated In-Sn-Zn-O thin film transistors. Ceramics International, 2019, 45(15): 19166-19172. doi:10.1016/j.ceramint.2019.06.163
49. Jung, S.H., Deshpande, N.G., Kim, Y.B. et al. Highly Improved Quasi-Two-Dimensional Oxide Transistors via Non-centrosymmetric Nitrogen Dioxide Treatment, toward Extremely Low Process Temperature and Operant Self-Aligned Coplanar Structure. ACS Applied Materials and Interfaces, 2019, 11(31): 28397-28406. doi:10.1021/acsami.9b06696
50. Zhao, R., Xiao, S., Yang, S. et al. Surface Thermolytic Behavior of Nickel Amidinate and Its Implication on the Atomic Layer Deposition of Nickel Compounds. Chemistry of Materials, 2019, 31(14): 5172-5180. doi:10.1021/acs.chemmater.9b01267
51. Seon, J.-B., Cho, Y.H., Lee, W.H. et al. Densification process and mechanism of solution-processed amorphous indium zinc oxide thin films for high-performance thin film transistors. Applied Physics Express, 2019, 12(7): 071004. doi:10.7567/1882-0786/ab2681
52. Leng, J., Wang, Z., Wang, J. et al. Advances in nanostructures fabricated: Via spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48(11): 3015-3072. doi:10.1039/c8cs00904j
53. Kim, S.Y., Cha, B.J., Saqlain, S. et al. Atomic layer deposition for preparation of highly efficient catalysts for dry reforming of methane. Catalysts, 2019, 9(3): 266. doi:10.3390/catal9030266
54. Kim, S.Y., Cha, B.J., Saqlain, S. et al. Atomic layer deposition for preparation of highly efficient catalysts for dry reforming of methane. Metals, 2019, 9(3): 346. doi:10.3390/met9030346
55. Mohammad, A., Shukla, D., Ilhom, S. et al. Real-time in situ ellipsometric monitoring of aluminum nitride film growth via hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37(2): 020927. doi:10.1116/1.5085341
56. Choi, W.-H., Sheng, J., Jeong, H.-J. et al. Improved performance and stability of In-Sn-Zn-O thin film transistor by introducing a meso-crystalline ZrO 2 high-k gate insulator. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37(2): 020924. doi:10.1116/1.5079834
57. Sheng, J., Lee, J.-H., Hong, T.-H. et al. Recent Progress on Metal Oxide Semiconductor Thin Film Transistor Application via Atomic Layer Deposition Method. Minerals, Metals and Materials Series, 2019. doi:10.1007/978-3-030-05861-6_10
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7438 Times PDF downloads: 320 Times Cited by: 57 Times

    History

    Received: 12 October 2017 Revised: 18 November 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes[J]. Journal of Semiconductors, 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008 ****J Z Sheng, K Han, T Hong, W Choi, J Park, Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes[J]. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008.
      Citation:
      Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes[J]. Journal of Semiconductors, 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008 ****
      J Z Sheng, K Han, T Hong, W Choi, J Park, Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes[J]. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008.

      Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

      DOI: 10.1088/1674-4926/39/1/011008
      Funds:

      Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

      More Information
      • Corresponding author: Prof. Jin-Seong Park ( jsparklime@hanyang.ac.kr)
      • Received Date: 2017-10-12
      • Revised Date: 2017-11-18
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return