Citation: |
Feng Liang, Degang Zhao, Zongshun Liu, Ping Chen, Jing Yang, Lihong Duan, Yongsheng Shi, Hai Wang. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. Journal of Semiconductors, 2021, 42(11): 112801. doi: 10.1088/1674-4926/42/11/112801
****
F Liang, D G Zhao, Z S Liu, P Chen, J Yang, L H Duan, Y S Shi, H Wang, GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. J. Semicond., 2021, 42(11): 112801. doi: 10.1088/1674-4926/42/11/112801.
|
GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature
DOI: 10.1088/1674-4926/42/11/112801
More Information
-
Abstract
In this work, we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode (LD), and its stimulated emission wavelength is around 442 nm. The GaN-based high power blue LD is grown on a c-plane GaN substrate by metal organic chemical vapor deposition (MOCVD), and the width and length of the ridge waveguide structure are 30 and 1200 μm, respectively. The threshold current is about 400 mA, and corresponding threshold current density is 1.1 kA/cm2.-
Keywords:
- GaN,
- blue laser diode,
- high power
-
References
[1] Nakamura S, Senoh M, Nagahama S I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35, L74 doi: 10.1143/JJAP.35.L74[2] Akasaki I, Sota S, Sakai H, et al. Shortest wavelength semiconductor laser diode. Electron Lett, 1996, 32, 1105 doi: 10.1049/el:19960743[3] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0[4] Zhao D G, Yang J, Liu Z S, et al. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J Semicond, 2017, 38, 051001 doi: 10.1088/1674-4926/38/5/051001[5] Liang F, Zhao D G, Jiang D S, et al. Performance deterioration of GaN-based laser diode by V-pits in the upper waveguide layer. Nanophotonics, 2020, 9, 667 doi: 10.1515/nanoph-2019-0449[6] Liang F, Yang J, Zhao D G, et al. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h. J Semicond, 2019, 40, 022801 doi: 10.1088/1674-4926/40/2/022801[7] Schwarz U T, Sturm E, Kümmler V, et al. Gain spectra and current-induced phase-shift in blue laser diodes. Frontiers in Optics, 2003, WMM3[8] Kuramoto M, Hisanaga Y, Kimura A, et al. An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: II. Experimental study on InGaN MQW laser for optimization of differential gain characteristics tuned by In compositional fluctuation. Semicond Sci Technol, 2001, 16, 770 doi: 10.1088/0268-1242/16/9/306[9] Kojima K, Funato M, Kawakami Y, et al. Gain suppression phenomena observed in InxGa1− xN quantum well laser diodes emitting at 470 nm. Appl Phys Lett, 2006, 89, 241127 doi: 10.1063/1.2404971[10] Liang F, Yang J, Zhao D G, et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1– xN layer (0.08 ≤ x ≤ 0.104). Superlattices Microstruct, 2018, 113, 720 doi: 10.1016/j.spmi.2017.12.002[11] Wang X W, Liang F, Zhao D G, et al. Improving the homogeneity and quality of InGaN/GaN quantum well exhibiting high In content under low TMIn flow and high pressure growth. Appl Surf Sci, 2021, 548, 149272 doi: 10.1016/j.apsusc.2021.149272[12] Wang X, Liang F, Zhao D, et al. Investigations on the optical properties of InGaN/GaN multiple quantum wells with varying GaN cap layer thickness. Nanoscale Res Lett, 2020, 15, 191 doi: 10.1186/s11671-020-03420-y[13] Peng L Y, Zhao D G, Zhu J J, et al. Achieving homogeneity of InGaN/GaN quantum well by well/barrier interface treatment. Appl Surf Sci, 2020, 505, 144283 doi: 10.1016/j.apsusc.2019.144283[14] Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115, 163704 doi: 10.1063/1.4873957[15] Liang F, Yang J, Zhao D G, et al. Resistivity reduction of low temperature grown p-Al0.09Ga0.91N by suppressing the incorporation of carbon impurity. AIP Adv, 2018, 8, 085005 doi: 10.1063/1.5046875[16] Zhang Y, Liang F, Zhao D, et al. Hydrogen can passivate carbon impurities in Mg-doped GaN. Nanoscale Res Lett, 2020, 15, 38 doi: 10.1186/s11671-020-3263-9[17] Liang F, Zhao D, Jiang D, et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Appl Opt, 2017, 56, 4197 doi: 10.1364/AO.56.004197[18] Liang F, Zhao D G, Jiang D S, et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. J Cryst Growth, 2017, 467, 1 doi: 10.1016/j.jcrysgro.2017.03.009 -
Proportional views