Citation: |
Fedor I. Manyakhin, Dmitry O. Varlamov, Vladimir P. Krylov, Lyudmila O. Morketsova, Arkady A. Skvortsov, Vladimir K. Nikolaev. Physico−mathematical model of the voltage−current characteristics of light-emitting diodes with quantum wells based on the Sah−Noyce−Shockley recombination mechanism[J]. Journal of Semiconductors, 2024, 45(8): 082102. doi: 10.1088/1674-4926/23120044
****
F I Manyakhin, D O Varlamov, V P Krylov, L O Morketsova, A A Skvortsov, and V K Nikolaev, Physico−mathematical model of the voltage−current characteristics of light-emitting diodes with quantum wells based on the Sah−Noyce−Shockley recombination mechanism[J]. J. Semicond., 2024, 45(8), 082102 doi: 10.1088/1674-4926/23120044
|
Physico−mathematical model of the voltage−current characteristics of light-emitting diodes with quantum wells based on the Sah−Noyce−Shockley recombination mechanism
DOI: 10.1088/1674-4926/23120044
More Information
-
Abstract
Herein, a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells (QWs) is prepared using the Sah−Noyce−Shockley (SNS) recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration. A comparison of the model voltage−current characteristics (VCCs) with the experimental ones reveals their adequacy. The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10 Å. The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4. -
References
[1] Shockley W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J, 1949, 28, 435 doi: 10.1002/j.1538-7305.1949.tb03645.x[2] Sah C T, Noyce R N, Shockley W. Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc IRE, 1957, 45, 1228 doi: 10.1109/JRPROC.1957.278528[3] Moeini I, Ahmadpour M, Mosavi A, et al. Modeling the time-dependent characteristics of perovskite solar cells. Sol Energy, 2018, 170, 969 doi: 10.1016/j.solener.2018.05.082[4] Sabity M R, Ali G M. Staggered heterojunction Pentacene/ZnO based organic−inorganic flexible photodetector. Results Opt, 2023, 11, 100403 doi: 10.1016/j.rio.2023.100403[5] Houshmand M, Zandi M H, Gorji N E. Degradation and device physics modeling of SWCNT/CdTe thin film photovoltaics. Superlattices Microstruct, 2015, 88, 365 doi: 10.1016/j.spmi.2015.09.023[6] Moeini I, Ahmadpour M, Gorji N E. Modeling the instability behavior of thin film devices: Fermi Level pinning. Superlattices Microstruct, 2018, 117, 399 doi: 10.1016/j.spmi.2018.03.045[7] Díaz S R. A generalized theoretical approach for solar cells fill factors by using Shockley diode model and Lambert W-function: A review comparing theory and experimental data. Phys B Condens Matter, 2022, 624, 413427 doi: 10.1016/j.physb.2021.413427[8] Sze S M, Ng K K. Physics of semiconductor devices. New Jersey: John Wiley & Sons, 2007, 1, 1[9] Torchynska T V, Polupan G P, Kooshnirenko V I, et al. Mechanism of injection-enhanced defect transformation in LPE GaAs structures. Phys B Condens Matter, 1999, 273/274, 1037 doi: 10.1016/S0921-4526(99)00633-X[10] Manuel H, Iván L, Carlos A, et al. Improved GaInP/GaAs/GaInAs inverted metamorphic triple-junction solar cells by reduction of Zn diffusion in the top subcell. Sol Energy Mater Sol Cells, 2022, 248, 112000 doi: 10.1016/j.solmat.2022.112000[11] Manyakhin F I, Vattana A B, Mokretsova L O. Application of the sah-noyce-shockley recombination mechanism to the model of the voltagecurrent relationship of led structures with quantum wells. Light Eng, 2020, 31[12] Grushko N S, Vostretsova L N, Ambrosevich A S, et al. Effect of temperature on luminance-current characteristics of the InGaN light-emitting diode’s structure. Semiconductors, 2009, 43, 1356 doi: 10.1134/S1063782609100182[13] Masui H. Diode ideality factor in modern light-emitting diodes. Semicond Sci Technol, 2011, 26, 075011 doi: 10.1088/0268-1242/26/7/075011[14] Masui H, Nakamura S, DenBaars S P. Technique to evaluate the diode ideality factor of light-emitting diodes. Appl Phys Lett, 2010, 96, 073509 doi: 10.1063/1.3318285[15] Pengchan W, Phetchakul T, Poyai A. The local generation and recombination lifetime based on forward diode characteristics diagnostics. J Cryst Growth, 2013, 362, 300 doi: 10.1016/j.jcrysgro.2011.11.087[16] de Vrijer T, van Nijen D, Parasramka H, et al. The fundamental operation mechanisms of nc-SiOX>0 :H based tunnel recombination junctions revealed. Sol Energy Mater Sol Cells, 2022, 236, 111501. doi: 10.1016/j.solmat.2021.111501[17] Bulyarskii S V, Vorob’ev M O, Grushko N S, et al. Deep-level recombination spectroscopy in GaP light-emitting diodes. Semiconductors, 1999, 33, 668 doi: 10.1134/1.1187753[18] Özdemir O, Sel K. Study of minority carrier injection phenomenon on Schottky and plasma deposited p−n junction diodes. Mater Sci Semicond Process, 2009, 12, 175 doi: 10.1016/j.mssp.2009.10.001[19] Manyakhin F I, Mokretsova L O. The regularity of the decrease in the quantum yield of quantum-wells LEDs at the long-term current flow from the ABC model position. Light Eng, 2021, 62[20] Yu P Y, Cardona M. Fundamentals of semiconductors: Physics and materials properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, 1, 1[21] Adachi S. Handbook on physical properties of semiconductors. New York: Springer, 2004[22] Shockley W, Read W T. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87, 835 doi: 10.1103/PhysRev.87.835[23] Kudryashov V E, Mamakin S S, Turkin A N, et al. Luminescence spectra and efficiency of GaN-based quantum-well heterostructure light emitting diodes: Current and voltage dependence. Semiconductors, 2001, 35, 827 doi: 10.1134/1.1385720[24] Manyakhin F I. Mechanism and behavior of the light flux decrease in light-emitting diodes based on AlGaN/InGaN/GaN structures with quantum wells upon prolonged direct-current flow of various densities. Semiconductors, 2018, 52, 359 doi: 10.1134/S1063782618030168[25] Manyakhin F I, Mokretsova L O. Modeling the energy structure of a GaN p−i−n junction. Russ Microelectron, 2018, 47, 619 doi: 10.1134/S1063739718080073 -
Proportional views