J. Semicond. > 2024, Volume 45 > Issue 8 > 082501

ARTICLES

Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing

Siyi Huang1, 2, 3, Masao Ikeda2, 3, , Feng Zhang2, 3, Minglong Zhang1, 2, 3, Jianjun Zhu2, 3, Shuming Zhang1, 2, 3 and Jianping Liu1, 2, 3,

+ Author Affiliations

 Corresponding author: Masao Ikeda, mikeda2013@sinano.ac.cn; Jianping Liu, jpliu2010@sinano.ac.cn

DOI: 10.1088/1674-4926/24010017

PDF

Turn off MathJax

Abstract: Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper. Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges. Hole concentration, resistivity and mobility were characterized by room-temperature Hall measurements. The Mg doping concentration and the residual impurities such as H, C, O and Si were measured by secondary ion mass spectroscopy, confirming negligible compensations by the impurities. The hole concentration, resistivity and mobility data are presented as a function of Mg concentration, and are compared with literature data. The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density [$N_{\mathrm{A}}^- $] (cm−3) dependent ionization energy of Mg acceptor was determined as $E_{\mathrm{A}}^{{\mathrm{Mg}}} $ = 184 − 2.66 × 10−5 × [$N_{\mathrm{A}}^- $]1/3 meV.

Key words: p-GaNhole concentrationelectrical propertiesannealingionization energy



[1]
Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353 doi: 10.1063/1.96549
[2]
Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys, 1991, 30, L1705 doi: 10.1143/JJAP.30.L1705
[3]
Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112 doi: 10.1143/JJAP.28.L2112
[4]
Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139 doi: 10.1143/JJAP.31.L139
[5]
Svensk O, Suihkonen S, Lang T, et al. Effect of growth conditions on electrical properties of Mg-doped p-GaN. J Cryst Growth, 2007, 298, 811 doi: 10.1016/j.jcrysgro.2006.10.101
[6]
Tian A Q, Liu J P, Ikeda M, et al. Conductivity enhancement in AlGaN: Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8, 051001 doi: 10.7567/APEX.8.051001
[7]
Yang J, Zhao D G, Jiang D S, et al. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films. Chin Phys B, 2016, 25, 027102 doi: 10.1088/1674-1056/25/2/027102
[8]
Narita T, Tomita K, Tokuda Y, et al. The origin of carbon-related carrier compensation in p-type GaN layers grown by MOVPE. J Appl Phys, 2018, 124, 215701 doi: 10.1063/1.5057373
[9]
Czernecki R, Grzanka E, Jakiela R, et al. Hydrogen diffusion in GaN: Mg and GaN: Si. J Alloys Compd, 2018, 747, 354 doi: 10.1016/j.jallcom.2018.02.270
[10]
Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667 doi: 10.1063/1.116503
[11]
Wen T C, Lee S C, Lee W I, et al. Activation of p-Type GaN in a pure oxygen ambient. Jpn J Appl Phys, 2001, 40, L495 doi: 10.1143/JJAP.40.L495
[12]
Hull B A, Mohney S E, Venugopalan H S, et al. Influence of oxygen on the activation of p-type GaN. Appl Phys Lett, 2000, 76, 2271 doi: 10.1063/1.126318
[13]
Pearton S J, Lee J W, Yuan C. Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN. Appl Phys Lett, 1996, 68, 2690 doi: 10.1063/1.116310
[14]
Miyachi M, Tanaka T, Kimura Y, et al. The activation of Mg in GaN by annealing with minority-carrier injection. Appl Phys Lett, 1998, 72, 1101 doi: 10.1063/1.120936
[15]
Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers. Phys Rev B, 2000, 62, 10867 doi: 10.1103/PhysRevB.62.10867
[16]
Iida D, Tamura K, Iwaya M, et al. Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy. J Cryst Growth, 2010, 312, 3131 doi: 10.1016/j.jcrysgro.2010.07.038
[17]
Huang S Y, Ikeda M, Zhang M L, et al. Suitable contacting scheme for evaluating electrical properties of GaN-based p-type layers. J Semicond, 2023, 44, 052802 doi: 10.1088/1674-4926/44/5/052802
[18]
Narita T, Tomita K, Kataoka K, et al. Overview of carrier compensation in GaN layers grown by MOVPE: toward the application of vertical power devices. Jpn J Appl Phys, 2020, 59, SA0804 doi: 10.7567/1347-4065/ab4610
[19]
Zhang M L, Ikeda M, Huang S Y, et al. Ni/Pd-based ohmic contacts to p-GaN through p-InGaN/p+-GaN contacting layers. J Semicond, 2022, 43, 092803 doi: 10.1088/1674-4926/43/9/092803
[20]
Castiglia A, Carlin J F, Grandjean N. Role of stable and metastable Mg−H complexes in p-type GaN for cw blue laser diodes. Appl Phys Lett, 2011, 98, 213505 doi: 10.1063/1.3593964
[21]
Van de Walle C G. Interactions of hydrogen with native defects in GaN. Phys Rev B, 1997, 56, R10020 doi: 10.1103/PhysRevB.56.R10020
[22]
Myers S M, Wright A F, Petersen G A, et al. Equilibrium state of hydrogen in gallium nitride: Theory and experiment. J Appl Phys, 2000, 88, 4676 doi: 10.1063/1.1309123
[23]
Papamichail A, Kakanakova-Georgieva A, Sveinbjörnsson E Ö, et al. Mg-doping and free-hole properties of hot-wall MOCVD GaN. J Appl Phys, 2022, 131, 185704 doi: 10.1063/5.0089406
[24]
Takeya M, Ikeda M. Novel methods of p-type activation in Mg-doped GaN. Jpn J Appl Phys, 2001, 40, 6260 doi: 10.1143/JJAP.40.6260
[25]
Kozodoy P, Xing H, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87, 1832 doi: 10.1063/1.372098
[26]
Tsuchiya Y, Okadome Y, Honshio A, et al. Control of p-type conduction in a-plane GaN grown on sapphire r-plane substrate. Jpn J Appl Phys, 2005, 44, L1516 doi: 10.1143/JJAP.44.L1516
[27]
Morkoc H. Nitride semiconductor devices. Wiley, 2013
[28]
Yeo Y C, Chong T C, Li M F. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J Appl Phys, 1998, 83, 1429 doi: 10.1063/1.366847
[29]
Zhang F, Ikeda M, Zhou K, et al. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions. J Appl Phys, 2015, 118, 033101 doi: 10.1063/1.4926865
[30]
Im J S, Moritz A, Steuber F, et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 1997, 70, 631 doi: 10.1063/1.118293
[31]
Mott N F, Twose W D. The theory of impurity conduction. Adv Phys, 1961, 10, 107 doi: 10.1080/00018736100101271
[32]
Götz W, Kern R S, Chen C H, et al. Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes. Mater Sci Eng B, 1999, 59, 211 doi: 10.1016/S0921-5107(98)00393-6
[33]
Bernardini F, Fiorentini V, Vanderbilt D. Polarization-based calculation of the dielectric tensor of polar crystals. Phys Rev Lett, 1997, 79, 3958 doi: 10.1103/PhysRevLett.79.3958
[34]
Morin F J, Maita J P. Electrical properties of silicon containing arsenic and boron. Phys Rev, 1954, 96, 28 doi: 10.1103/PhysRev.96.28
[35]
Ermanis F, Wolfstirn K. Hall effect and resistivity of Zn-doped GaAs. J Appl Phys, 1966, 37, 1963 doi: 10.1063/1.1708648
[36]
Honda M, Ikeda M, Mori Y, et al. The energy levels of Zn and Se in (AlxGa1-x)0.52In0.48P. Jpn J Appl Phys, 1985, 24, L187 doi: 10.1143/JJAP.24.L187
[37]
Casey H C, Panish M B. Heterostructure lasers Part A, Academic Press, New York, 1978
[38]
Nagamatsu K, Takeda K, Iwaya M, et al. Activation energy of Mg in Al0.25Ga0.75N and Al0.5Ga0.5N. Phys Status Solidi C, 2009, 6, S437 doi: 10.1002/pssc.200880810
[39]
Chichibu S F, Uedono A, Kojima K, et al. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J Appl Phys, 2018, 123, 161413 doi: 10.1063/1.5012994
Fig. 1.  (Color online) Calibration curves of [Mg] for two series of p-GaN samples.

Fig. 2.  (Color online) Relationships between p, ρ, and μ for samples A (circles) and B (squares) under different annealing conditions, the solid lines are trendlines.

Fig. 3.  (Color online) Residual [H] plot against [Mg] for selected p-GaN samples after annealing.

Fig. 4.  (Color online) Dependence of the (a) p, (b) ρ, and (c) μ for each p-GaN sample on [Mg] by RT Hall measurement. Blue solid lines are guides for eyes. Black symbols are taken from literatures[15, 2326].

Fig. 5.  (Color online) Depth profile of Mg, C, O, and Si of a typical p-GaN sample grown at 850 °C after annealing, measured by SIMS.

Fig. 6.  (Color online) Dependence of p for each p-GaN sample on [Mg] by RT Hall measurement. Red solid curve is the theoretical curve obtained from this experiment. Black dotted line assumes ND = 1 × 1017 cm−3, $ {N}_{\mathrm{A}}^{-}=p+{N}_{\mathrm{D}} $, and the same EA with the red curve. Black broken line is obtained assuming the same EA with the red curve, NA = [Mg] − [H] and using residual [H] taken from Fig. 3. Blue dots are measured data taken from Fig. 4(a).

[1]
Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353 doi: 10.1063/1.96549
[2]
Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys, 1991, 30, L1705 doi: 10.1143/JJAP.30.L1705
[3]
Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112 doi: 10.1143/JJAP.28.L2112
[4]
Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139 doi: 10.1143/JJAP.31.L139
[5]
Svensk O, Suihkonen S, Lang T, et al. Effect of growth conditions on electrical properties of Mg-doped p-GaN. J Cryst Growth, 2007, 298, 811 doi: 10.1016/j.jcrysgro.2006.10.101
[6]
Tian A Q, Liu J P, Ikeda M, et al. Conductivity enhancement in AlGaN: Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8, 051001 doi: 10.7567/APEX.8.051001
[7]
Yang J, Zhao D G, Jiang D S, et al. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films. Chin Phys B, 2016, 25, 027102 doi: 10.1088/1674-1056/25/2/027102
[8]
Narita T, Tomita K, Tokuda Y, et al. The origin of carbon-related carrier compensation in p-type GaN layers grown by MOVPE. J Appl Phys, 2018, 124, 215701 doi: 10.1063/1.5057373
[9]
Czernecki R, Grzanka E, Jakiela R, et al. Hydrogen diffusion in GaN: Mg and GaN: Si. J Alloys Compd, 2018, 747, 354 doi: 10.1016/j.jallcom.2018.02.270
[10]
Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667 doi: 10.1063/1.116503
[11]
Wen T C, Lee S C, Lee W I, et al. Activation of p-Type GaN in a pure oxygen ambient. Jpn J Appl Phys, 2001, 40, L495 doi: 10.1143/JJAP.40.L495
[12]
Hull B A, Mohney S E, Venugopalan H S, et al. Influence of oxygen on the activation of p-type GaN. Appl Phys Lett, 2000, 76, 2271 doi: 10.1063/1.126318
[13]
Pearton S J, Lee J W, Yuan C. Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN. Appl Phys Lett, 1996, 68, 2690 doi: 10.1063/1.116310
[14]
Miyachi M, Tanaka T, Kimura Y, et al. The activation of Mg in GaN by annealing with minority-carrier injection. Appl Phys Lett, 1998, 72, 1101 doi: 10.1063/1.120936
[15]
Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers. Phys Rev B, 2000, 62, 10867 doi: 10.1103/PhysRevB.62.10867
[16]
Iida D, Tamura K, Iwaya M, et al. Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy. J Cryst Growth, 2010, 312, 3131 doi: 10.1016/j.jcrysgro.2010.07.038
[17]
Huang S Y, Ikeda M, Zhang M L, et al. Suitable contacting scheme for evaluating electrical properties of GaN-based p-type layers. J Semicond, 2023, 44, 052802 doi: 10.1088/1674-4926/44/5/052802
[18]
Narita T, Tomita K, Kataoka K, et al. Overview of carrier compensation in GaN layers grown by MOVPE: toward the application of vertical power devices. Jpn J Appl Phys, 2020, 59, SA0804 doi: 10.7567/1347-4065/ab4610
[19]
Zhang M L, Ikeda M, Huang S Y, et al. Ni/Pd-based ohmic contacts to p-GaN through p-InGaN/p+-GaN contacting layers. J Semicond, 2022, 43, 092803 doi: 10.1088/1674-4926/43/9/092803
[20]
Castiglia A, Carlin J F, Grandjean N. Role of stable and metastable Mg−H complexes in p-type GaN for cw blue laser diodes. Appl Phys Lett, 2011, 98, 213505 doi: 10.1063/1.3593964
[21]
Van de Walle C G. Interactions of hydrogen with native defects in GaN. Phys Rev B, 1997, 56, R10020 doi: 10.1103/PhysRevB.56.R10020
[22]
Myers S M, Wright A F, Petersen G A, et al. Equilibrium state of hydrogen in gallium nitride: Theory and experiment. J Appl Phys, 2000, 88, 4676 doi: 10.1063/1.1309123
[23]
Papamichail A, Kakanakova-Georgieva A, Sveinbjörnsson E Ö, et al. Mg-doping and free-hole properties of hot-wall MOCVD GaN. J Appl Phys, 2022, 131, 185704 doi: 10.1063/5.0089406
[24]
Takeya M, Ikeda M. Novel methods of p-type activation in Mg-doped GaN. Jpn J Appl Phys, 2001, 40, 6260 doi: 10.1143/JJAP.40.6260
[25]
Kozodoy P, Xing H, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87, 1832 doi: 10.1063/1.372098
[26]
Tsuchiya Y, Okadome Y, Honshio A, et al. Control of p-type conduction in a-plane GaN grown on sapphire r-plane substrate. Jpn J Appl Phys, 2005, 44, L1516 doi: 10.1143/JJAP.44.L1516
[27]
Morkoc H. Nitride semiconductor devices. Wiley, 2013
[28]
Yeo Y C, Chong T C, Li M F. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J Appl Phys, 1998, 83, 1429 doi: 10.1063/1.366847
[29]
Zhang F, Ikeda M, Zhou K, et al. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions. J Appl Phys, 2015, 118, 033101 doi: 10.1063/1.4926865
[30]
Im J S, Moritz A, Steuber F, et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 1997, 70, 631 doi: 10.1063/1.118293
[31]
Mott N F, Twose W D. The theory of impurity conduction. Adv Phys, 1961, 10, 107 doi: 10.1080/00018736100101271
[32]
Götz W, Kern R S, Chen C H, et al. Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes. Mater Sci Eng B, 1999, 59, 211 doi: 10.1016/S0921-5107(98)00393-6
[33]
Bernardini F, Fiorentini V, Vanderbilt D. Polarization-based calculation of the dielectric tensor of polar crystals. Phys Rev Lett, 1997, 79, 3958 doi: 10.1103/PhysRevLett.79.3958
[34]
Morin F J, Maita J P. Electrical properties of silicon containing arsenic and boron. Phys Rev, 1954, 96, 28 doi: 10.1103/PhysRev.96.28
[35]
Ermanis F, Wolfstirn K. Hall effect and resistivity of Zn-doped GaAs. J Appl Phys, 1966, 37, 1963 doi: 10.1063/1.1708648
[36]
Honda M, Ikeda M, Mori Y, et al. The energy levels of Zn and Se in (AlxGa1-x)0.52In0.48P. Jpn J Appl Phys, 1985, 24, L187 doi: 10.1143/JJAP.24.L187
[37]
Casey H C, Panish M B. Heterostructure lasers Part A, Academic Press, New York, 1978
[38]
Nagamatsu K, Takeda K, Iwaya M, et al. Activation energy of Mg in Al0.25Ga0.75N and Al0.5Ga0.5N. Phys Status Solidi C, 2009, 6, S437 doi: 10.1002/pssc.200880810
[39]
Chichibu S F, Uedono A, Kojima K, et al. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J Appl Phys, 2018, 123, 161413 doi: 10.1063/1.5012994

24010017Supplementary information.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 711 Times PDF downloads: 100 Times Cited by: 0 Times

    History

    Received: 11 January 2024 Revised: 17 April 2024 Online: Accepted Manuscript: 30 May 2024Uncorrected proof: 31 May 2024Published: 15 August 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang, Jianping Liu. Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. Journal of Semiconductors, 2024, 45(8): 082501. doi: 10.1088/1674-4926/24010017 ****S Y Huang, M Ikeda, F Zhang, M L Zhang, J J Zhu, S M Zhang, and J P Liu, Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. J. Semicond., 2024, 45(8), 082501 doi: 10.1088/1674-4926/24010017
      Citation:
      Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang, Jianping Liu. Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. Journal of Semiconductors, 2024, 45(8): 082501. doi: 10.1088/1674-4926/24010017 ****
      S Y Huang, M Ikeda, F Zhang, M L Zhang, J J Zhu, S M Zhang, and J P Liu, Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. J. Semicond., 2024, 45(8), 082501 doi: 10.1088/1674-4926/24010017

      Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing

      DOI: 10.1088/1674-4926/24010017
      More Information
      • Siyi Huang got his bachelor's degree in 2011 from University of Science and Technology Beijing and his master’s degree in 2014 from City University of Hong Kong. Now he is a doctoral student at University of Science and Technology of China under the supervision of Prof. Masao Ikeda and Prof. Jianping Liu. His research focuses on MOCVD growth and characterization of GaN-based materials
      • Masao Ikeda received his doctoral degree from Waseda University, Tokyo, Japan, in 1991. He is currently a Professor with the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China. His current research interests include Ⅲ−Ⅴ compound semiconductor materials and devices
      • Jianping Liu is a professor in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences. He earned his doctoral degree from Institute of Semiconductors, Chinese Academy of Sciences in 2004. He worked at Lab of Optoelectronics Technology at Beijing University of Technology from 2004 to 2006. He did postdoctoral research in Department of Electrical Engineering at Georgia Institute of Technology from 2006 to 2010. His research interests include MOCVD growth, GaN-based materials and devices
      • Corresponding author: mikeda2013@sinano.ac.cnjpliu2010@sinano.ac.cn
      • Received Date: 2024-01-11
      • Revised Date: 2024-04-17
      • Available Online: 2024-05-30

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return