Citation: |
Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang, Jianping Liu. Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. Journal of Semiconductors, 2024, 45(8): 082501. doi: 10.1088/1674-4926/24010017
****
S Y Huang, M Ikeda, F Zhang, M L Zhang, J J Zhu, S M Zhang, and J P Liu, Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing[J]. J. Semicond., 2024, 45(8), 082501 doi: 10.1088/1674-4926/24010017
|
Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing
DOI: 10.1088/1674-4926/24010017
More Information
-
Abstract
Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper. Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges. Hole concentration, resistivity and mobility were characterized by room-temperature Hall measurements. The Mg doping concentration and the residual impurities such as H, C, O and Si were measured by secondary ion mass spectroscopy, confirming negligible compensations by the impurities. The hole concentration, resistivity and mobility data are presented as a function of Mg concentration, and are compared with literature data. The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density [$N_{\mathrm{A}}^- $] (cm−3) dependent ionization energy of Mg acceptor was determined as $E_{\mathrm{A}}^{{\mathrm{Mg}}} $ = 184 − 2.66 × 10−5 × [$N_{\mathrm{A}}^- $]1/3 meV.-
Keywords:
- p-GaN,
- hole concentration,
- electrical properties,
- annealing,
- ionization energy
-
References
[1] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353 doi: 10.1063/1.96549[2] Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys, 1991, 30, L1705 doi: 10.1143/JJAP.30.L1705[3] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112 doi: 10.1143/JJAP.28.L2112[4] Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139 doi: 10.1143/JJAP.31.L139[5] Svensk O, Suihkonen S, Lang T, et al. Effect of growth conditions on electrical properties of Mg-doped p-GaN. J Cryst Growth, 2007, 298, 811 doi: 10.1016/j.jcrysgro.2006.10.101[6] Tian A Q, Liu J P, Ikeda M, et al. Conductivity enhancement in AlGaN: Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8, 051001 doi: 10.7567/APEX.8.051001[7] Yang J, Zhao D G, Jiang D S, et al. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films. Chin Phys B, 2016, 25, 027102 doi: 10.1088/1674-1056/25/2/027102[8] Narita T, Tomita K, Tokuda Y, et al. The origin of carbon-related carrier compensation in p-type GaN layers grown by MOVPE. J Appl Phys, 2018, 124, 215701 doi: 10.1063/1.5057373[9] Czernecki R, Grzanka E, Jakiela R, et al. Hydrogen diffusion in GaN: Mg and GaN: Si. J Alloys Compd, 2018, 747, 354 doi: 10.1016/j.jallcom.2018.02.270[10] Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667 doi: 10.1063/1.116503[11] Wen T C, Lee S C, Lee W I, et al. Activation of p-Type GaN in a pure oxygen ambient. Jpn J Appl Phys, 2001, 40, L495 doi: 10.1143/JJAP.40.L495[12] Hull B A, Mohney S E, Venugopalan H S, et al. Influence of oxygen on the activation of p-type GaN. Appl Phys Lett, 2000, 76, 2271 doi: 10.1063/1.126318[13] Pearton S J, Lee J W, Yuan C. Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN. Appl Phys Lett, 1996, 68, 2690 doi: 10.1063/1.116310[14] Miyachi M, Tanaka T, Kimura Y, et al. The activation of Mg in GaN by annealing with minority-carrier injection. Appl Phys Lett, 1998, 72, 1101 doi: 10.1063/1.120936[15] Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers. Phys Rev B, 2000, 62, 10867 doi: 10.1103/PhysRevB.62.10867[16] Iida D, Tamura K, Iwaya M, et al. Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy. J Cryst Growth, 2010, 312, 3131 doi: 10.1016/j.jcrysgro.2010.07.038[17] Huang S Y, Ikeda M, Zhang M L, et al. Suitable contacting scheme for evaluating electrical properties of GaN-based p-type layers. J Semicond, 2023, 44, 052802 doi: 10.1088/1674-4926/44/5/052802[18] Narita T, Tomita K, Kataoka K, et al. Overview of carrier compensation in GaN layers grown by MOVPE: toward the application of vertical power devices. Jpn J Appl Phys, 2020, 59, SA0804 doi: 10.7567/1347-4065/ab4610[19] Zhang M L, Ikeda M, Huang S Y, et al. Ni/Pd-based ohmic contacts to p-GaN through p-InGaN/p+-GaN contacting layers. J Semicond, 2022, 43, 092803 doi: 10.1088/1674-4926/43/9/092803[20] Castiglia A, Carlin J F, Grandjean N. Role of stable and metastable Mg−H complexes in p-type GaN for cw blue laser diodes. Appl Phys Lett, 2011, 98, 213505 doi: 10.1063/1.3593964[21] Van de Walle C G. Interactions of hydrogen with native defects in GaN. Phys Rev B, 1997, 56, R10020 doi: 10.1103/PhysRevB.56.R10020[22] Myers S M, Wright A F, Petersen G A, et al. Equilibrium state of hydrogen in gallium nitride: Theory and experiment. J Appl Phys, 2000, 88, 4676 doi: 10.1063/1.1309123[23] Papamichail A, Kakanakova-Georgieva A, Sveinbjörnsson E Ö, et al. Mg-doping and free-hole properties of hot-wall MOCVD GaN. J Appl Phys, 2022, 131, 185704 doi: 10.1063/5.0089406[24] Takeya M, Ikeda M. Novel methods of p-type activation in Mg-doped GaN. Jpn J Appl Phys, 2001, 40, 6260 doi: 10.1143/JJAP.40.6260[25] Kozodoy P, Xing H, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87, 1832 doi: 10.1063/1.372098[26] Tsuchiya Y, Okadome Y, Honshio A, et al. Control of p-type conduction in a-plane GaN grown on sapphire r-plane substrate. Jpn J Appl Phys, 2005, 44, L1516 doi: 10.1143/JJAP.44.L1516[27] Morkoc H. Nitride semiconductor devices. Wiley, 2013[28] Yeo Y C, Chong T C, Li M F. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J Appl Phys, 1998, 83, 1429 doi: 10.1063/1.366847[29] Zhang F, Ikeda M, Zhou K, et al. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions. J Appl Phys, 2015, 118, 033101 doi: 10.1063/1.4926865[30] Im J S, Moritz A, Steuber F, et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 1997, 70, 631 doi: 10.1063/1.118293[31] Mott N F, Twose W D. The theory of impurity conduction. Adv Phys, 1961, 10, 107 doi: 10.1080/00018736100101271[32] Götz W, Kern R S, Chen C H, et al. Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes. Mater Sci Eng B, 1999, 59, 211 doi: 10.1016/S0921-5107(98)00393-6[33] Bernardini F, Fiorentini V, Vanderbilt D. Polarization-based calculation of the dielectric tensor of polar crystals. Phys Rev Lett, 1997, 79, 3958 doi: 10.1103/PhysRevLett.79.3958[34] Morin F J, Maita J P. Electrical properties of silicon containing arsenic and boron. Phys Rev, 1954, 96, 28 doi: 10.1103/PhysRev.96.28[35] Ermanis F, Wolfstirn K. Hall effect and resistivity of Zn-doped GaAs. J Appl Phys, 1966, 37, 1963 doi: 10.1063/1.1708648[36] Honda M, Ikeda M, Mori Y, et al. The energy levels of Zn and Se in (AlxGa1-x)0.52In0.48P. Jpn J Appl Phys, 1985, 24, L187 doi: 10.1143/JJAP.24.L187[37] Casey H C, Panish M B. Heterostructure lasers Part A, Academic Press, New York, 1978[38] Nagamatsu K, Takeda K, Iwaya M, et al. Activation energy of Mg in Al0.25Ga0.75N and Al0.5Ga0.5N. Phys Status Solidi C, 2009, 6, S437 doi: 10.1002/pssc.200880810[39] Chichibu S F, Uedono A, Kojima K, et al. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J Appl Phys, 2018, 123, 161413 doi: 10.1063/1.5012994 -
Supplements
24010017Supplementary information.pdf -
Proportional views