Citation: |
Bo Cao, Ye Tian, Huan Fei Wen, Hao Guo, Xiaoyu Wu, Liangjie Li, Zhenrong Zhang, Lai Liu, Qiang Zhu, Jun Tang, Jun Liu. Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures[J]. Journal of Semiconductors, 2024, 45(9): 091101. doi: 10.1088/1674-4926/24040041
****
B Cao, Y Tian, H F Wen, H Guo, X Y Wu, L J Li, Z R Zhang, L Liu, Q Zhu, J Tang, and J Liu, Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures[J]. J. Semicond., 2024, 45(9), 091101 doi: 10.1088/1674-4926/24040041
|
Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures
DOI: 10.1088/1674-4926/24040041
More Information
-
Abstract
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons, nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.-
Keywords:
- Sn-doped CdS,
- micro-nano structure,
- superlattices,
- optical microcavity
-
References
[1] Cavin R K, Lugli P, Zhirnov V V. Science and engineering beyond Moore’s law. Proc IEEE, 2012, 100, 1720 doi: 10.1109/JPROC.2012.2190155[2] Haensch W, Nowak E J, Dennard R H, et al. Silicon CMOS devices beyond scaling. IBM J Res Dev, 2006, 50, 339 doi: 10.1147/rd.504.0339[3] Ye Y, Dai Y, Dai L, et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl Mater Interfaces, 2010, 2, 3406 doi: 10.1021/am1007672[4] Jia C C, Lin Z Y, Huang Y, et al. Nanowire electronics: From nanoscale to macroscale. Chem Rev, 2019, 119, 9074 doi: 10.1021/acs.chemrev.9b00164[5] Yan R X, Gargas D, Yang P D. Nanowire photonics. Nature Photon, 2009, 3, 569 doi: 10.1038/nphoton.2009.184[6] Quan L N, Kang J, Ning C Z, et al. Nanowires for photonics. Chem Rev, 2019, 119, 9153 doi: 10.1021/acs.chemrev.9b00240[7] Chen C H, Chang S J, Chang S P, et al. Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction. Chem Phys Lett, 2009, 476, 69 doi: 10.1016/j.cplett.2009.06.007[8] Yang Z Y, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers. Science, 2019, 365, 1017 doi: 10.1126/science.aax8814[9] Zhang M, Wille M, Röder R, et al. Amphoteric nature of Sn in CdS nanowires. Nano Lett, 2014, 14, 518 doi: 10.1021/nl4035169[10] Granados del Águila A, Jha B, Pietra F, et al. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals. ACS Nano, 2014, 8, 5921 doi: 10.1021/nn501026t[11] Scott R, Prudnikau A V, Antanovich A, et al. A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958 doi: 10.1039/C8NR09458F[12] Achtstein A W, Schliwa A, Prudnikau A, et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 2012, 12, 3151 doi: 10.1021/nl301071n[13] Achermann M, Bartko A P, Hollingsworth J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat Phys, 2006, 2, 557 doi: 10.1038/nphys363[14] Klimov V I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B, 2000, 104, 6112 doi: 10.1021/jp9944132[15] Hou X Q, Kang J, Qin H Y, et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat Commun, 2019, 10, 1750 doi: 10.1038/s41467-019-09737-2[16] Wang Y, Sun H D. Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Prog Quant Electron, 2018, 60, 1 doi: 10.1016/j.pquantelec.2018.05.002[17] Jang J, Song G, Kyhm K, et al. Optical gain of inelastic exciton-exciton scattering in CdS nanowires. Appl Phys Lett, 2019, 114, 1101 doi: 10.1063/1.5086782[18] Zhang Z, Wang Y L, Yin S Y, et al. Exciton-polariton light-emitting diode based on a ZnO microwire. Opt Express, 2017, 25, 17375 doi: 10.1364/OE.25.017375[19] Chen J Y, Wong T M, Chang C W, et al. Self-polarized spin-nanolasers. Nature Nanotech, 2014, 9, 845 doi: 10.1038/nnano.2014.195[20] Zhao Z, Zhong M Y, Zhou W C, et al. Simultaneous triplet exciton–phonon and exciton–photon photoluminescence in the individual weak confinement CsPbBr3 micro/nanowires. J Phys Chem C, 2019, 123, 25349 doi: 10.1021/acs.jpcc.9b06643[21] Takagahara T. Electron−phonon interactions in semiconductor nanocrystals. J Lumin, 1996, 70, 129 doi: 10.1016/0022-2313(96)00050-6[22] Zheng Q, Zhou W C, Peng Y H, et al. Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology, 2018, 29, 465709 doi: 10.1088/1361-6528/aadf64[23] Lai Y Y, Lan Y P, Lu T C. Strong light–matter interaction in ZnO microcavities. Light Sci Appl, 2013, 2, e76 doi: 10.1038/lsa.2013.32[24] Tawara T, Yoshida H, Yogo T, et al. Microcavities with distributed Bragg reflectors based on ZnSe/MgS superlattice grown by MOVPE. J Cryst Growth, 2000, 221, 699 doi: 10.1016/S0022-0248(00)00803-4[25] Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 2010, 4, 174 doi: 10.1038/nphoton.2009.287x[26] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photon, 2016, 10, 216 doi: 10.1038/nphoton.2015.282[27] Fang K J, Matheny M H, Luan X S, et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat Photonics, 2016, 10, 489 doi: 10.1038/nphoton.2016.107[28] Tochitsky I, Trautman J, Gallerani N, et al. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci Rep, 2017, 7, 45487 doi: 10.1038/srep45487[29] van Vugt L K, Rühle S, Ravindran P, et al. Exciton polaritons confined in a ZnO nanowire cavity. Phys Rev Lett, 2006, 97, 147401 doi: 10.1103/PhysRevLett.97.147401[30] Stevenson R M, Salter C L, Nilsson J, et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys Rev Lett, 2012, 108, 040503 doi: 10.1103/PhysRevLett.108.040503[31] Tian Y, Peng H, Yao S, et al. Repeatedly and superbroad savelength tuning microcavity in a single Sn-doped CdS microcone. J Phys Chem C, 2022, 126, 12696 doi: 10.1021/acs.jpcc.2c04142[32] Zhang L, Zhang Y, Guo Y, et al. Growth of CdS nanotubes and their strong optical microcavity effects. Nanoscale, 2019, 11, 5325 doi: 10.1039/C8NR10323B[33] Song G L, Guo S, Wang X X, et al. Temperature dependent Raman and photoluminescence of an individual Sn-doped CdS branched nanostructure. New J Phys, 2015, 17, 063024 doi: 10.1088/1367-2630/17/6/063024[34] Zhang Q L, Zhu X L, Li Y Y, et al. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev, 2016, 10, 458 doi: 10.1002/lpor.201500268[35] Dai G Z, Wan Q, Zhou C J, et al. Sn-catalyst growth and optical waveguide of ultralong CdS nanowires. Chem Phys Lett, 2010, 497, 85 doi: 10.1016/j.cplett.2010.07.095[36] Dai B B, Fan C, Xu X, et al. Growing a CdS flag from a wire with in situ control of the catalyst. CrystEngComm, 2021, 23, 3664 doi: 10.1039/D1CE00289A[37] Dai G Z, Zou B S, Wang Z L. Preparation and periodic emission of superlattice CdS/CdS: SnS2 microwires. J Am Chem Soc, 2010, 132, 12174 doi: 10.1021/ja1037963[38] Dai G Z, Liu R B, Wan Q, et al. Color-tunable periodic spatial emission of alloyed CdS1-xSex/Sn: CdS1-xSex superlattice microwires. Opt Mater Express, 2011, 1, 1185 doi: 10.1364/OME.1.001185[39] Zou S Y, Zhou W C, Liu R B, et al. Cavity-enhanced microphotoluminescence in a core–shell n–p CdS/CdO micrometer wire and Its efficient surface photovoltage responses in the whole visible range. J Phys Chem C, 2017, 121, 14349 doi: 10.1021/acs.jpcc.7b04053[40] Liu R B, Li Z A, Zhang C H, et al. Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett, 2013, 13, 2997 doi: 10.1021/nl401726z[41] Arguello C A, Rousseau D L, Porto S P S. First-order Raman effect in wurtzite-type crystals. Phys Rev, 1969, 181, 1351 doi: 10.1103/PhysRev.181.1351[42] Smith A J, Meek P E, Liang W Y. Raman scattering studies of SnS2 and SnSe2. J Phys C Solid State Phys, 1977, 10, 1321 doi: 10.1088/0022-3719/10/8/035[43] Zhou W C, Liu R B, Wan Q, et al. Bound exciton and optical properties of SnO2 one-dimensional nanostructures. J Phys Chem C, 2009, 113, 1719 doi: 10.1021/jp808422a[44] Abello L, Bochu B, Gaskov A, et al. Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. J Solid State Chem, 1998, 135, 78 doi: 10.1006/jssc.1997.7596[45] Peng Y H, Luo Y, Zhou W C, et al. Photoluminescence and boosting electron-phonon coupling in CdS nanowires with variable Sn(IV) dopant concentration. Nanoscale Res Lett, 2021, 16, 19 doi: 10.1186/s11671-021-03485-3[46] Scott J F, Damen T C, Silfvast W T, et al. Resonant Raman scattering in ZnS and ZnSe with the cadmium laser. Opt Commun, 1970, 1, 397 doi: 10.1016/0030-4018(70)90081-7[47] Pan A L, Liu R B, Zou B S. Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Appl Phys Lett, 2006, 88, 3102 doi: 10.1063/1.2198089[48] Xu J Y, Zhuang X J, Guo P F, et al. Dilute tin-doped CdS nanowires for low-loss optical waveguiding. J Mater Chem C, 2013, 1, 4391 doi: 10.1039/c3tc30492b[49] Guo S, Wang L, Ding C J, et al. Tunable optical loss and multi-band photodetection based on tin doped CdS nanowire. J Alloys Compd, 2020, 835, 155330 doi: 10.1016/j.jallcom.2020.155330[50] Aguilar-Hern ndez J, Contreras-Puente G, Morales-Acevedo A, et al. Photoluminescence and structural properties of cadmium sulphide thin films grown by different techniques. Semicond Sci Technol, 2003, 18, 111 doi: 10.1088/0268-1242/18/2/308[51] Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34, 149 doi: 10.1016/0031-8914(67)90062-6[52] Zhang L, Liu R B, Zou B S. Sn-doped CdS nanowires with low-temperature lasing by CW-laser excitation. ACS Appl Electron Mater, 2020, 2, 282 doi: 10.1021/acsaelm.9b00766[53] Liu B, Chen R, Xu X L, et al. Exciton-related photoluminescence and lasing in CdS nanobelts. J Phys Chem C, 2011, 115, 12826 doi: 10.1021/jp203551f[54] Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon, 2008, 2, 741 doi: 10.1038/nphoton.2008.226[55] Gou G Y, Dai G Z, Qian C, et al. High-performance ultraviolet photodetectors based on CdS/CdS: SnS2 superlattice nanowires. Nanoscale, 2016, 8, 14580 doi: 10.1039/C6NR02915A[56] Tian Y, Zhang Y Y, Peng H, et al. Revealing the quantum-confined free exciton A anisotropic emission in a CdS/CdS: SnS2 superlattice nanocone via angle-resolved photoluminescence spectroscopy. J Phys Chem C, 2022, 126, 1064 doi: 10.1021/acs.jpcc.1c09755[57] Tian Y, Yao S F, Lin W C, et al. Effect of quantum confinement on polarization anisotropy emission in Sn-doped CdS microcones. Mater Adv, 2022, 3, 8407 doi: 10.1039/D2MA00883A[58] Maslov A V, Ning C Z. Radius-dependent polarization anisotropy in semiconductor nanowires. Phys Rev B, 2005, 72, 161310 doi: 10.1103/PhysRevB.72.161310[59] Guo S, Liu R B, Niu C H, et al. Tin nanoparticles–enhanced optical transportation in branched CdS nanowire waveguides. Adv Opt Mater, 2018, 6, 1800305 doi: 10.1002/adom.201800305[60] Zhou W C, Tang D S, Liu R B, et al. Structure and optical properties of pure and doped ZnO 1D nanostructures. Mate Lett, 2013, 91, 369 doi: 10.1016/j.matlet.2012.10.041[61] Guo S, Zhao F Y, Li Y, et al. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers. Appl Phys Lett, 2016, 109, 162101 doi: 10.1063/1.4964879[62] Liu R B, Chen Y J, Wang F F, et al. Stimulated emission from trapped excitons in SnO2 nanowires. Physica E Low Dimension Syst Nanostruct, 2007, 39, 223 doi: 10.1016/j.physe.2007.04.009[63] Zhang Q L, Liu H W, Guo P F, et al. Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy, 2017, 32, 28 doi: 10.1016/j.nanoen.2016.12.014[64] Li L, Yang S M, Han F, et al. Optical sensor based on a single CdS nanobelt. Sensors, 2014, 14, 7332 doi: 10.3390/s140407332[65] Zhou W C, Peng Y H, Yin Y L, et al. Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Adv, 2014, 4, 3005 doi: 10.1063/1.4897521[66] Jie J S, Zhang W J, Jiang Y, et al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Leet, 2006, 6, 1887 doi: 10.1021/nl060867g[67] Zhou W C, Zhou Y, Peng Y H, et al. Ultrahigh sensitivity and gain white light photodetector based on GaTe/Sn: CdS nanoflake/nanowire heterostructures. Nanotechnology, 2014, 25, 445202 doi: 10.1088/0957-4484/25/44/445202[68] Gou G Y, Dai G Z, Wang X W, et al. High-performance and flexible photodetectors based on P3HT/CdS/CdS: SnS2 superlattice nanowires hybrid films. Appl Phys A, 2017, 123, 731 doi: 10.1007/s00339-017-1344-0[69] Wang X F, Song W F, Liu B, et al. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Materials, 2013, 23, 1202 doi: 10.1002/adfm.201201786[70] Dai G Z, Zou H Y, Wang X F, et al. Piezo-phototronic effect enhanced responsivity of photon sensor based on composition-tunable ternary CdSxSe1–x nanowires. ACS Photonics, 2017, 4, 2495 doi: 10.1021/acsphotonics.7b00724[71] Hao Y, Guo S, Weller D, et al. Position-sensitive array photodetector based on comb-like CdS nanostructure with cone-shape branches. Adv Funct Materials, 2019, 29, 1805967 doi: 10.1002/adfm.201805967[72] Pan A L, Zhou W C, Leong E S P, et al. Super-broadly wavelength-tunable semiconductor nanowire lasers on a single substrate. 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, 2009, 1 doi: 10.1364/CLEO.2009.CTuY7[73] Zhang Q L, Wang S W, Liu X X, et al. Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. Nano Energy, 2016, 30, 481 doi: 10.1016/j.nanoen.2016.10.045[74] Wu Y X, Xiang Y, Zhao S D, et al. Auto-alignment of CdS nanowires via optical tweezers. Appl Phys A, 2022, 128, 200 doi: 10.1007/s00339-022-05350-1[75] Guo S, Wang X F, Zhao X Y, et al. The realization of the nanoscale bar-codes based on CdS branched nanostructure. J Alloys Compd, 2023, 969, 172339 doi: 10.1016/j.jallcom.2023.172339[76] Zhang J, Jiang F H. Temperature-dependent photoluminescence of Mg-doped CdS nanowires. Phys Lett A, 2009, 373, 3888 doi: 10.1016/j.physleta.2009.08.034[77] Zhai T Y, Fang X S, Li L, et al. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale, 2010, 2, 168 doi: 10.1039/b9nr00415g -
Proportional views